立体几何典型题型(理科)

立体几何典型题型(理科)

ID:22095317

大小:3.48 MB

页数:10页

时间:2018-10-27

立体几何典型题型(理科)_第1页
立体几何典型题型(理科)_第2页
立体几何典型题型(理科)_第3页
立体几何典型题型(理科)_第4页
立体几何典型题型(理科)_第5页
资源描述:

《立体几何典型题型(理科)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、WORD文档下载可编辑立体几何经典例题剖析考点一空间向量及其运算1.已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解析:要判断点与是否一定共面,即是要判断是否存在有序实数对使或对空间任一点,有。答案:由题意:,∴,∴,即,所以,点与共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形和矩形所在平面互相垂直,点,分别在对角线,上,且,.求证:平面.解析:要证明平面,只要证明向量可以用平面内的两个不共线的向量和线性表示.答案

2、:证明:如图,因为在上,且,所以.同理,又,所以.又与不共线,根据共面向量定理,可知,,共面.由于不在平面内,所以平面.点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二证明空间线面平行与垂直3.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC1//平面CDB1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面

3、平行得到线面平行.答案:解法一:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1;(II)设CB1与C1B的交点为E,连结DE,∵D是AB的中点,E是BC1的中点,专业资料整理分享WORD文档下载可编辑ABCA1B1C1Exyz∴DE//AC1,∵DE平面CDB1,AC1平面CDB1,∴AC1//平面CDB1;解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、

4、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)∵=(-3,0,0),=(0,-4,0),∴•=0,∴AC⊥BC1.(2)设CB1与C1B的交战为E,则E(0,2,2).∵=(-,0,2),=(-3,0,4),∴,∴DE∥AC1.点评:转化转化2.平行问题的转化:面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.4.(2007武汉3月)如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,P

5、A=AD=CD=2AB=2,M为PC的中点。(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)是的中点,取PD的中点,则,又四边形为平行四边形∥,∥(4分)(2)以为原点,以、、所在直线为轴、轴、轴建立空间直角坐标系,如图,则,,,,,在平面内设,,,由专业资料整理分享WORD文档下载可编辑由是的中点,此时(8分)(3)设直线与平面所成的角为,,设为故直线与平面所成

6、角的正弦为(12分)解法二:(1)是的中点,取PD的中点,则,又四边形为平行四边形∥,∥(4分)(2)由(1)知为平行四边形,又同理,为矩形∥,,又作故交于,在矩形内,,,为的中点当点为的中点时,(8分)(3)由(2)知为点到平面的距离,为直线与平面所成的角,设为,直线与平面所成的角的正弦值为点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点

7、三求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法另外也可借助空间向量求这三种角的大小.5.(四川省成都市2007届高中毕业班第三次诊断性检测)如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.(Ⅰ)求与底面所成角的大小

8、;专业资料整理分享WORD文档下载可编辑(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法求二面角的大小也可

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。