欢迎来到天天文库
浏览记录
ID:21955395
大小:311.50 KB
页数:7页
时间:2018-10-25
《排列组合习题-(含详细答案解析)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD文档可编辑圆梦教育中心排列组合专项训练1.题1(方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法?解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:(种)(法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:(种)注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无
2、差别)同类题一题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:详解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有种分法。同类题二题面:求方程X+Y+Z=10的正整数解的个数。答案:36.详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值,故解的个数为C92=36(个)。2.题2(插空法,三
3、星)题面:某展室有9个展台,现有件展品需要展出,要求每件展品独自占用个展台,并且件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种.答案:,同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A·A种.详解:任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A·A种不同排法.同类题二题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A.36种B.48种C.72种
4、D.96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共AA=72种排法,故选C.3.题3(插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:=6720种排法.技术资料专业分享WORD文档可编辑(法2)[1]5个男生先排好:;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元
5、素,共有:种,综上:有()=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种?答案:30。详解:记两个小品节目分别为A、B。先排A节目。根据A节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆,有种方法。这一步完成后就有5个节目了。再考虑需加入的B节目前后的节目数,同理知有种方法。故由分步计数原理知,方法共有(种)。同类题二题面:(2013年开封模拟)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两
6、位女生相邻,则不同排法的种数是( )A.60B.48C.42D.36答案:B.详解:第一步选2女相邻排列C·A,第二步与男—女排列A,第三步男生甲插在中间,1种插法,第四步男—男生插空C,故有C·A·A·C=48种不同排法.4.题4(隔板法变形,三星)题面:15个相同的球,按下列要求放入4个写上了1、2、3、4编号的盒子,各有多少种不同的放法?(1)将15个球放入盒子内,使得每个盒子都不空;(2)将15个球放入盒子内,每个盒子的球数不小于盒子的编号数;(3)将15个球放入盒子内,每个盒子不必非空;(4)任取5个球,写上1-5编号,再放入盒
7、内,使每个盒子都至少有一个球;(5)任取10个球,写上1-10编号,奇数编号的球放入奇数编号的盒子,偶数编号的球放入偶数编号的盒子.解析:(2)先将2、3、4号盒子分别放入1、2、3个球,剩下的9个球用挡板法,=56(3)借来4个球,转化为19个球放入盒子内,每个盒子非空,(4)不能用“挡板法”,因为元素有差别.(法1)必有一个盒子有2个球,;(法2)先选3个球,分别排到4个盒子中的3个里,剩下的盒子自然放2个球.;(法3),会重!需要除2!技术资料专业分享WORD文档可编辑重复原因:1号盒子放1、5号球,先放1后放5与先放5、后放1是一样
8、的!(5)(法1)每个球都有2种选择,共有种方法;(法2)奇数号的球有1、3、5、7、9,共5个,可以在1、3号两个盒子中选一个放入,共有:种放法,同理放偶数号的球也有种方法,综
此文档下载收益归作者所有