《古典概型》ppt课件

《古典概型》ppt课件

ID:21898375

大小:350.50 KB

页数:39页

时间:2018-10-20

《古典概型》ppt课件_第1页
《古典概型》ppt课件_第2页
《古典概型》ppt课件_第3页
《古典概型》ppt课件_第4页
《古典概型》ppt课件_第5页
资源描述:

《《古典概型》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.2古典概型3.2.1古典概型问题提出1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?若事件A发生时事件B一定发生,则.若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.2.概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则P(A)+P(B)=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便

2、,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.古典概型思考1:抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?(正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).知识探究(一):基本事件思考2:上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?互斥关系思考3:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正

3、面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?思考4:综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.思考5:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.知识探究(二):古典概型思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相

4、等吗?思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.在射击练习中,“射击一次命中的环数”是古典概型吗?为什么?不是,因为命中的环数的可能性不相等.思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)P(“1点”)+P(“2点”)+P(“3

5、点”)+P(“4点”)+P(“5点”)+P(“6点”)=1.思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点”的概率如何计算?思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.

6、思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?P(A)=事件A所包含的基本事件的个数÷基本事件的总数.思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率P(A)等于什么?特别地,当A=U,A=Ф时,P(A)等于什么?理论迁移例1单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?0.25例2同时掷两个骰子,计算:(1)一共有多少

7、种不同的结果?(2)其中向上的点数之和是7的结果有多少种?(3)向上的点数之和是5的概率是多少?36;6;1/6.例3假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?0.00001例4某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.8÷30+8÷30+2÷30=0.6小结作业1.基本事件是一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。