欢迎来到天天文库
浏览记录
ID:21837180
大小:90.06 KB
页数:6页
时间:2018-10-25
《《古典概型》教学设计及反思》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《古典概型》教学设计及反思陈青霞(茂名市,化州市第一中学)一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解掌握古典概型及其概率公式.三、学法与教学用具:与学生共同探讨,应用数学解决现实问题.四、教
2、学过程设计 1.形成概念 (1)基本事件分析抛掷一枚质地均匀的硬币与骰子的试验结果的特点:相互之间是互斥关系;任何事件都可以表示为它们的和。从而归纳出基本事件的概念。例1(1)从字母A、B、C、D中任意取出一个字母的试验中,有哪些基本事件?(2)任意取出两个不同字母呢?设计意图:使学生了解基本事件及列举法(画树状图是列举法的基本方法),列出所有基本事件,并为归纳古典概型提供更多背景。由学生举例:说出试验中的基本事件,并补充一些不等可能的背景:如在掷一枚质地均匀骰子(其中四个面分别标有1、2、3、4,另两个面标有5)的试验中,基本事件分别是什么?设计意图:让学生深入
3、理解基本事件的意义,体会随机思想,并能认识到基本事件之间有等可能,也有不等可能,这里可以借助图形(如图:用一个圆表示必然事件,若等可能就将它等分,否则不等分)来直观说明。 (2)古典概型问题1 在掷一枚质地均匀的硬币或骰子及例1的试验中,基本事件分别有几个,它们之间有什么共同特征? 设计意图:借助具体试验中的基本事件,发现它们的共同特征,概括出古典概型的定义。 师生活动:通过引导,使学生逐步归纳出它们间的共性: (1)试验中所有可能出现的基本事件只有有限个;(有限性) (2)每个基本事件出现的可能性相等。(等可能性)定义:我们将具有这两个特点的概率模型称为古
4、典概率概型,简称古典概型。 设计意图:使学生进一步理解古典概型概念中的两个特征的含义。 师生活动:由学生来判断并说明理由。 2.归纳公式问题2 我们知道:抛掷一枚质地均匀的硬币出现正面朝上的概率为,抛掷一枚质地均匀的骰子出现“1点”的概率为,由此能否得出古典概型中任何事件的概率计算公式?设计意图:使学生从特殊问题入手(借助图形),归纳出古典概型概率计算公式。师生活动:引导学生从特殊试验中发现任意两个基本事件都是互斥且等可能,从而可以得出任一基本事件的概率,又因为任何事件(包括必然事件)都可以表示为基本事件的和,利用概率的加法公式可以得出结果,并从中体会从特殊到一
5、般归纳问题的思想。古典概型计算任何事件A的概率计算公式为: 3.应用举例 例2、单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考察的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?分析:解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。 解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选
6、择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:P(答对)==问题3、在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么? 答:这是因为多选题选对的可能性比单选题选对的可能性要小;事实上,在多选题中,基本事件有15个,(A)(B)(C)(D)(A,B)(A,C)(A,D)(B,C)(B,D)(C,D)(A,B,C)(A,B,D)(A,C,D)(B,C,D)(A,B,C,D),假定考
7、生不会做,在他随机选择任何答案是等可能的情况下,他答对的概率为< 例3、同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少? 分析:如果我们只关注两个骰子出现的点数和,则有2,3,4,…,11,12这11种结果;如果我们关注两个不加识别骰子出现的点数,则有下表中的21种结果 如果我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表
此文档下载收益归作者所有