从专利角度浅谈车牌识别技术的发展

从专利角度浅谈车牌识别技术的发展

ID:21548422

大小:25.00 KB

页数:5页

时间:2018-10-22

从专利角度浅谈车牌识别技术的发展_第1页
从专利角度浅谈车牌识别技术的发展_第2页
从专利角度浅谈车牌识别技术的发展_第3页
从专利角度浅谈车牌识别技术的发展_第4页
从专利角度浅谈车牌识别技术的发展_第5页
资源描述:

《从专利角度浅谈车牌识别技术的发展》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、从专利角度浅谈车牌识别技术的发展  摘要:车牌识别技术是智能交通系统的重要组成部分,文章从专利角度分析车牌识别技术的现状,对车牌识别技术专利文献进行统计分析,总结了与车牌识别相关的中国专利申请量趋势、重要申请人并进行关键技术的简单分析,以期为我国在车牌识别技术领域的发展和创新提供参考。  关键词:车牌;识别;专利;分析  引言  车牌识别技术[1-2]是指自动提取受监控区域车辆的车牌信息并进行处理的技术,其通过运用图像处理、计算机视觉、模式识别等技术,对摄像头捕获的车辆照片或视频进行分析,进而自动识别车辆的车牌号码。车牌

2、识别技术可应用于停车场自动收费管理、道路监控等领域,在城市交通管理中发挥了重要作用。  1中国专利申请情况分析  以CNABS专利数据库中的检索结果为分析样本,介绍车牌识别技术的中国专利申请量趋势以及重要申请人的状况。  1.1第一阶段(2005年及之前)  在这阶段,申请量极少且申请人也极少,且针对的环境较为简单,处于技术的萌芽阶段,其中,专利CN1529276,通过车牌定位、字符分割和分类识别完成机动车牌号自动识别,其实现过程较为简单,具体细节描述较少。  1.2第二阶段(2006年-2010年)  在这阶段的申请量

3、比上一阶段有所增加,而且申请人数量相较之前也有增长,其中来自高校的申请量明显增加,反映出了高校研究者开始更加注重对研究成果的保护,这一阶段的专利所针对的环境场景更为复杂,识别准确率得到提高,对车牌定位、字符分割、字符识别等关键技术的研究更为深入。  1.3第三阶段(2011年及以后)  在2011年之后车牌识别技术的专利申请量呈现快速增长,这一阶段车牌识别技术得到了更进一步的丰富,涉及的关键技术的解决途径也呈现出多样性,检测效率和精度也得到进一步提高,其中,专利CN104035954A,涉及一种基于Hadoop的套牌车识

4、别方法,将云计算应用于车牌识别,使得与传统环境下不经过优化的方法相比具有?^高的运行效率和加速比,可以有效地识别套牌车。  图2示出了中国重要申请人分布情况,申请量分布前十的申请人包括:电子科技大学、深圳市捷顺科技实业股份有限公司(捷顺科技)、浙江宇视科技有限公司(宇视科技)、信帧电子技术(北京)有限公司(信帧电子)、中国科学院自动化研究所(自动化研究所)、安徽清新互联信息科技有限公司(清新互联)、青岛海信网络科技股份有限公司(海信网络)、浙江工业大学、四川川大智胜软件股份有限公司(川大智胜)、上海高德威智能交通系统有限

5、公司(高德威智能交通),从图2中可以看出,不同申请人的申请量差距不是很大,几乎保持在一个比较持平的状态。  电子科技大学在车牌识别技术的专利申请中,CN101064011A提出一种基于小波变换的复杂背景中的车牌提取方法,可大大提高对晴天、雨天、雾天、白天及夜晚等环境的通用性和适用性,实现车牌的精确定位并提高车牌提取的准确度;CN103455815A提出一种复杂场景下的自适应车牌字符分割方法,能快速、准确地搜索2、3字符间隔位置,实现自适应调整分割参数,使车牌字符分割稳定可靠,在复杂的环境中鲁棒性强,防止噪声干扰;CN10

6、5005757A提出一种基于Grassmann流行的车牌字符识别方法,最大限度地利用了已获得的车牌字符信息以及同类字符之间的相互关系,对于车牌字符的成像质量要求更低,应用于复杂的环境中具有很好的鲁棒性和准确性。  2关键技术分析  一个完整的车牌定位与识别系统,其前端包括图像采集和传输系统,末端还需要与数据库相连接。从定位到识别的核心算法上,主要包括图像预处理、车牌定位、字符分割和字符识别四大部分[3]。  图像预处理,是指通过对摄像头捕获的彩色图像进行预处理。常用的预处理方法包括图像灰度化、图像二值化、边缘检测等。  

7、车牌定位,是指在经预处理后的车辆图像中,定位出车辆的车牌所在位置。常用的车牌定位方法包括基于纹理分析的方法、基于数学形态学的方法、基于边缘检测的方法、基于小波变换的方法和基于神经网络的方法等。CN104298976A提出一种基于卷积神经网络的车牌检测方法,利用卷积神经网络完整车牌识别模型对车牌粗选区域进行筛选,获取车牌最终候选区域。  字符分割,是指将定位出的车牌区域图像分割成单个的字符图像。常用的字符分割方法包括基于轮廓的方法、基于投影的方法、基于模板匹配的方法和基于连通区域的方法等。CN104408454A提出一种基

8、于弹性模板匹配算法的车牌字符分割方法,基于弹性模板,通过插空进行模板序列形状的弹性调整,将车牌图片与理想模板进行匹配,获得全局最优匹配,确定字符位置,将分割算法作用于投影序列,实现对车牌字符的分割。  字符识别,是指对字符分割之后的单个字符图像进行识别,进而得到车辆的车牌号码。常用的车牌字符识别方法包括基于字符结构特

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。