欢迎来到天天文库
浏览记录
ID:21433028
大小:9.71 MB
页数:5页
时间:2018-10-21
《中考几何——角平分线模型》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、学案学科初中数学年级九年级班级教师王春艳课题中考几何——角平分线辅助线添加技巧上课时间学习目标复习角平分线的性质与意义,认识中考几何中常用的四大角平分线模型的添加技巧,并能运用中几何证明中去。学习重点中考几何中常用的四大角平分线模型的添加技巧学习难点巧找突破口、秒杀中考角平分线类型题教学流程国学:老鹰是世界上寿命最长的鸟类,但在40岁时,它锋利的爪子开始老化,无法有效地捕抓猎物。它的羽毛长得又浓又厚,飞翔十分吃力,昨日雄风不再。于是不得不面临两种选择:一种是等死,另一种是必须经过持续5个月,自我“虐待”和“煎熬”的漫长“修炼”
2、。它费尽全力奋飞到一个绝高山顶,筑巢于悬崖之上,停留在那里,不得飞翔,从此开始过苦行僧般的生活。5个月后,新的羽毛长出来了,一生一次“脱胎换骨”的工程便告结束。老鹰又开始飞翔,无限广阔的大地,再次成为它的天堂。重生后,寿命可再添30年!如果能象老鹰一样,给自己一片没有退路的悬崖,不找理由找方法,面临后无退路的境地,集中精力奋勇向前,从生活中争得属于自己的位置,给自己一个向生命高地冲锋的机会,才能站的更高、望的更远。一、知识梳理在中考几何中,角平分线有着非常重要的技巧,借助于角平分线我们可以构造许多常见基本模型,比如全等三角形、
3、等腰三角形等,从而使许多复杂的几何题找到突破口,下面我们便一起来学习一下它的神奇之处吧!模型一、角分线,截两边,造全等 模型二、角分线,垂两边,成全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。模型三、角分垂,等腰现延长垂线段:题目中有垂直于角平分线的线段, 则延长该线段与角的另一边相交,构成等腰三角形。5模型四、角分平,等腰呈做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形 有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。或通过一边上的点作角平分线的
4、平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如图1和图2所示DCOABP①②二、身临其境【例1】(2011山东滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【例2】如图,在△ABC中,AD是∠BAC的角平分线,P是AD上异于点A的任意一点,求证:AC-AB>PC-PB【例3】(郑州模拟)如图,已知△ABC中,∠A=90°,AB=AC,BD
5、平分∠ABC,CE⊥BD于E,求证:BD=2CE.【例4】(2008山东模拟)如图所示,等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角边分别与边AB、AC交于点E、F,连结EF.当∠EPF绕顶点P旋转时(点E不与A、B重合),△PEF也始终是等腰直角三角形,请说明理由.5三、亲身体验(请小组合作完成)第一组题:如图∠AOP=∠BOP=15 ,PC//OA,PD⊥OA,如果PC=4,则PD=()A.4B.3C.2D.1第二组题:如图,∠A+∠C=180°,BD是∠ABC的平分线,求证:AD=CD. 第三组题:如图,已知
6、△ABC中,AD是△ABC的角平分线,CH⊥AD于H,M是BC边的中点,连结MH,若AC=4,AB=6,求线段MH的长。第四组题:如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD四、中考练兵1、(10石景山2模)24.(1)已知:如图1,△中,,,平分,点为中点,交的延长线于,猜想:5=°(直接写出结论,不需证明).图1图2(2)已知:如图2,△中,,,平分,点为中点,交的延长线于,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.2、(2011大连)在△ABC中,∠A=9
7、0°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)当AB=AC时(如图1),①∠EBF=_______°;②探究线段BE与FD的数量关系,并加以证明;(2)当AB=kAC时(如图2),求的值(用含k的式子表示).总结归纳本节重点是角平分线四大模型的认识与应用,难度较大,希望同学们在下面要反复复习与练习,以达到灵活运用!课后回顾55
此文档下载收益归作者所有