解析几何 求圆的轨迹方程(专题一)师用

解析几何 求圆的轨迹方程(专题一)师用

ID:21400834

大小:1002.00 KB

页数:12页

时间:2018-10-21

解析几何 求圆的轨迹方程(专题一)师用_第1页
解析几何 求圆的轨迹方程(专题一)师用_第2页
解析几何 求圆的轨迹方程(专题一)师用_第3页
解析几何 求圆的轨迹方程(专题一)师用_第4页
解析几何 求圆的轨迹方程(专题一)师用_第5页
资源描述:

《解析几何 求圆的轨迹方程(专题一)师用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12专题一求圆的轨迹方程教学目标:1、掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;2、掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程3、理解圆的标准方程与一般方程之间的关系,会进行互化。教学重难点:1、掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;2、会求曲线的轨迹方程(圆)教学过程:第一部分知识点回顾一、圆的方程:1.圆的标准方程:。2.圆的一般方程:特别提醒:只有当时,方程才表示圆心为,半径为的圆思考:二元二次方程表示圆的充要条件是什么?答案:(且且)

2、);3.圆的参数方程:(为参数),其中圆心为,半径为。圆的参数方程的主要应用是三角换元:;。4.为直径端点的圆方程如(1)圆C与圆关于直线对称,则圆C的方程为____________(答:);(2)圆心在直线上,且与两坐标轴均相切的圆的标准方程是__________(答:或);(3)已知是圆(为参数,上的点,则圆的普通方程为________,P点对应的值为_______,过P点的圆的切线方程是___________12(答:;;);(4)如果直线将圆:x2+y2-2x-4y=0平分,且不过第四象限,那么的斜率的取值范围是_(

3、答:[0,2]);(5)方程x2+y2-x+y+k=0表示一个圆,则实数k的取值范围为____(答:);(6)若(为参数,,,若,则b的取值范围是_________(答:)二、点与圆的位置关系:已知点及圆,(1)点M在圆C外;(2)点M在圆C内;(3)点M在圆C上。如点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是______(答:)三、直线与圆的位置关系:直线和圆有相交、相离、相切。可从代数和几何两个方面来判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):相交;相离;相切;(2)几

4、何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为,则相交;相离;相切。提醒:判断直线与圆的位置关系一般用几何方法较简捷。如(1)圆与直线,的位置关系为____(答:相离);(2)若直线与圆切于点,则的值____(答:2);(3)直线被曲线所截得的弦长等于(答:);(4)一束光线从点A(-1,1)出发经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是(答:4);(5)已知是圆内一点,现有以为中点的弦所在直线和直线,则  A.,且与圆相交 B.,且与圆相交12  C.,且与圆相离D.,且与圆相离(答:

5、C);(6)已知圆C:,直线L:。①求证:对,直线L与圆C总有两个不同的交点;②设L与圆C交于A、B两点,若,求L的倾斜角;③求直线L中,截圆所得的弦最长及最短时的直线方程.(答:②或  ③最长:,最短:)第二部分直线与圆的典型例题一、求圆的轨迹方程1、用定义法求圆的轨迹方程例1设方程,若该方程表示一个圆,求m的取值范围及这时圆心的轨迹方程。分析:配成圆的标准方程再求解解:配方得:该方程表示圆,则有,得,此时圆心的轨迹方程为,消去m,得,由得x=m+3所求的轨迹方程是,注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量

6、的取值范围,如题中变式1方程表示圆,求实数a的取值范围,并求出其中半径最小的圆的方程。解:原方程可化为当a时,原方程表示圆。又当,所以半径最小的圆方程为2、用待定系数法求圆的轨迹方程例2求过两点、且圆心在直线上的圆的标准方程并判断点12与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为.∵圆心在上,故.∴圆的方程为.又∵

7、该圆过、两点.∴解之得:,.所以所求圆的方程为.解法二:(直接求出圆心坐标和半径)因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:即.又知圆心在直线上,故圆心坐标为∴半径.故所求圆的方程为.又点到圆心的距离为.∴点在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例3求半径为4,与圆相切,且和直线相切的圆的方程.分析

8、:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆.圆与直线相切,且半径为4,则圆心的坐标为或.又已知圆的圆心的坐标为,半径为3.若两圆相切,则或.12(1)当时,,或(无解),故可得.∴所求圆方程为,或.(2)当时,,或(无解),故.∴所求圆的方程为,或.说明:对本题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。