解线性方程组消元法和其应用

解线性方程组消元法和其应用

ID:21301570

大小:196.00 KB

页数:4页

时间:2018-10-21

解线性方程组消元法和其应用_第1页
解线性方程组消元法和其应用_第2页
解线性方程组消元法和其应用_第3页
解线性方程组消元法和其应用_第4页
资源描述:

《解线性方程组消元法和其应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、解线性方程组的消元法及其应用(朱立平曲小刚)l     教学目标与要求通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵.l     教学重点与难点教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵.教学难点:高斯消元法,利用消元法求逆矩阵.l     教学方法与建议先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换

2、,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。l     教学过程设计1.问题的提出由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的.引例解线性方程组解(1)用回代的方法求出解即可.问题:观察解此方程组的过程,我们总共作了三种变换:(1)交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的倍.那么对于高阶方程组来说,是否也可以考虑用此方法.2.矩阵的初等变换定义1阶梯形矩阵是指每一非零行第一个非零

3、元素前的零元素个数随行序数的增加而增加的矩阵.定义2下面的三种变换统称为矩阵的初等行变换:i.互换矩阵的两行(例如第行与第行,记作),ii.用数乘矩阵的某行的所有元素(例如第行乘,记作),iii.把矩阵某行的所有元素的倍加到另一行的对应元素上去(例如第行的倍加到第行上,记作).同理可以定义矩阵的初等列变换.定义3如果矩阵经过有限次初等变换变为矩阵,则称矩阵与等价,记作~.注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵.3.高斯消元法对于一般的阶线性方程组(3.1)若系数行列式,即方程组有唯一解,则其消元过程如下:第一步,设方程(1)中的系数将方程与(1)对调,使对调后的第一个方程的

4、系数不为零.作,得到同解方程组(3.2)第二步,设,保留第二个方程,消去它以下方程中的含的项,得(3.3)照此消元,直至第步得到三角形方程组(3.4)接下来的回代过程首先由(3.4)的最后方程求出,依次向上代入求出即可.高斯消元法用矩阵初等变换的方法表示就是注:用高斯消元法求解线性方程组,是对线性方程组作三种初等行变换(某个方程乘非零常数k;一个方程乘常数k加到另一个方程,对换两个方程的位置),将其化为同解的阶梯形方程组,这一消元过程用矩阵来表示就是对方程组的增广矩阵施行初等行变换,化为阶梯矩阵.因此,求解线性方程组时不能对增广矩阵施行对换矩阵的两列以外的列变换,若对换矩阵的两列,相

5、应地未知元也要对换.4.应用(1)化矩阵为阶梯形例1试用消元法化为阶梯形矩阵,解=则即为所求的与等价的阶梯形矩阵.(2)求逆矩阵利用初等行变换求逆矩阵的方法主要分为以下三步:a)将矩阵与同阶的单位方阵拼成;b)对施行初等行变换,目标是将变换成;c)当变换为时,原来的变换成,即.注:若将拼成,只能施行初等列变换,即.例2求矩阵的逆矩阵.解=所以.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。