四年级奥数-教师版-第六讲幻方与数阵图

四年级奥数-教师版-第六讲幻方与数阵图

ID:21284638

大小:738.13 KB

页数:12页

时间:2018-10-20

四年级奥数-教师版-第六讲幻方与数阵图_第1页
四年级奥数-教师版-第六讲幻方与数阵图_第2页
四年级奥数-教师版-第六讲幻方与数阵图_第3页
四年级奥数-教师版-第六讲幻方与数阵图_第4页
四年级奥数-教师版-第六讲幻方与数阵图_第5页
资源描述:

《四年级奥数-教师版-第六讲幻方与数阵图》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、指南针小升初第六讲幻方与数阵图知识导航三阶幻方的性质:1.中心位置上的数等于幻和除以3;2.角上得数等于和它不相邻的两条边上的数的平均数;3.中心数两头的数等于中心数的2倍。例1:我们先来一起解决三道难度相差很大的题目,目的在于总结出三阶幻方的若干重要性质。第1题如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?解析:首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。它是多少呢?哦,如果我们按照行(按照列也一样)把幻方

2、中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。于是最后,我们终于得到这个至关重要的“幻和”就是45÷3=15。接下来第二步,我们来关心一下中间一格应该填哪个数字。同学们可能会说,中间一定填5,因为1到9的中间数字就是5,而幻方又是上下左右对称的。没错,同学们有这样的数学直观很好,但是为了确定我们的判断,还是需要严格地说明一下。ABCDEFGHI看上面的表格,由于我们还没有填入任何一个数字,所以就用了九个大写字

3、母来表示。下面就需要技巧了,我们现在只考虑包含E的四条直线:因为A+E+I=15,B+E+H=15,C+E+G=15,D+E+F=15,所以如果我们把这四个式子的左右两边分别相加,就可以得到(A+B+C+D+E+F+G+H+I)+3×E=60,-11-指南针小升初而A+B+C+D+E+F+G+H+I不就是所填数的总和吗?不论填法如何,这个数是不变的,它就是45,于是那么我们就得到E=5了。解:根据上面的分析,我们知道“幻和”=15,而E=5。从而我们知道A+I=B+H=C+G=D+F=10,也意味着在所有经过中心的直线上,两端的数字奇偶性相同。然后我们可以通过枚举的方法确

4、定每个位置上数字的奇偶性:(大家自己完成)偶奇偶奇5奇偶奇偶我们可以看到,如果4个角上的偶数被确定下来,那么其余4个奇数也就被确定了,所以我们可以只考虑这4个偶数的填法。利用一点简单的乘法原理,大家就可以知道本题共有8种填法。具体填法如下:294276834816753951159357618438672492492438672618357951159753816276834294总结:这里要强调一点:奇偶性分析并不是解决幻方题的典型方法,只在某些特殊的题目中会被用到。在上面这个解题过程中,我们用到了一点技巧,希望同学们加以领会。本题中,我们看到所有经过中心的直线上,两端

5、数字的平均数就等于中间这个E。那么我们来问一个深入一点的问题:你认为这是在这道题中才产生的特殊性质,还是所有的三阶幻方都应该具有类似的性质?还有,就是上面我们曾经得出的那个“幻和”的3倍就等于这九个数之和的这条性质,它能不能推广到所有的三阶幻方?【巩固】.请你将3~11这9个数字填入下面的方格中,使横、竖、斜行三个数的和相等。解析:首先将这列数中的中间数放在中间的格子里可知幻和是7×3=21;其次;将最小的数和最大的数分别放在这个数的横向或竖向的两边;第三,中间数前面的第2和第4个数分别填在最大数的两侧,这时就可以轻松的确定剩下的几个空了。-11-指南针小升初894371

6、11056437116例2:下图是一个三阶幻方,请说明幻和等于3倍的E且D+F=2×E。DEF第2题解析:有了第1题的基础,大家应该对本题感到不是那么陌生了,只要把第1题的一部分解题过程搬过来就行。这道题也是让大家看一看如何把一个特殊的解题过程变成一条普遍的规律或性质。解:首先把题目中的空白格子标上不同的字母,以便表述。ABCDEFGHI首先,只考虑包含E的四条直线,得到A+E+I=“幻和”,B+E+H=“幻和”,C+E+G=“幻和”,D+E+F=“幻和”。然后,把这四个式子的左右两边分别相加,得到(A+B+C+D+E+F+G+H+I)+3×E=4倍的“幻和”,而另一方面

7、,如果我们只考虑幻方的三行,则有A+B+C=D+E+F=G+H+I=“幻和”,因此A+B+C+D+E+F+G+H+I=3倍的“幻和”。所以,3×E=“幻和”,而“幻和”=D+E+F,于是D+F=2×E。总结:同样的分析办法,还可以得到A+I=B+H=C+G=D+F=2×E(请大家自己说明)。本题回答了例1评议中提出的两个问题,从而我们得到三阶幻方的两条重要性质。性质1:“幻和”的3倍等于这九个数之和;性质2:所有经过中心的直线上,两端数字的平均数就等于正中间的数字。BAC第3题例3:上图是一个三阶幻方,请说明A+B=2×C。-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。