圆周率的历史.ppt

圆周率的历史.ppt

ID:21175224

大小:739.00 KB

页数:18页

时间:2018-10-18

圆周率的历史.ppt_第1页
圆周率的历史.ppt_第2页
圆周率的历史.ppt_第3页
圆周率的历史.ppt_第4页
圆周率的历史.ppt_第5页
资源描述:

《圆周率的历史.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、圆周率π=3.14159265358979323…目录1卷首语圆周率是指平面上圆的周长与直径之比,是一个常数,用希腊字母π(读“Pài”)表示。在一般计算时,人们通常把这个无限不循环小数简化成3.14。圆周率是一个极其驰名的数,从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。对它的研究,在一定程度上反映了这个地区或时代的数学水平,它的历史是饶有趣味的。在中国古代,圆周率还有圆率、周率、周等名称。目录2目录1圆周率的历史2圆周率的计算简史3(一)试验时期4(二)几何法时期5(三)分析法时期6(四)计算机时

2、期7割圆术8祖冲之的贡献9背圆周率的口诀目录3目录圆周率的历史人类对圆周率的认识过程,反映了数学和计算技术发展情形的一个侧面。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”历史上曾采用过圆周率的多种近似值。古代巴比伦、印度、中国等长期使用π=3这个数值。公元前2世纪,中国古算书《周髀算经》记载了“径一而周三”。十九世纪前,求圆周率的值一直是数学中的头号难题,计算进展相当缓慢。十九世纪后,计算圆周率的世界纪录频频创新。进入二十世纪,随着计算机的发明,圆周率

3、的计算突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。4目录圆周率作为一个非常重要的常数,求出它的尽量准确的近似值是一个极其关键的问题。为求得圆周率的值,人类走过了漫长而曲折的道路。为了计算出圆周率的越来越好的近似值,古今中外一代代的数学家付出了自己的智慧和劳动,贡献了无数的时间与心血。圆周率的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。以下是人们计算圆周率几个标志性的时期。圆周率的计算简史5早期的圆周率大都是通过实验而得到的结果,即基于对一个圆的周长和直径的实际测量而

4、对圆周率进行估算。古埃及、古希腊人曾用谷粒摆在圆形上,以谷粒数与方形对比的方法取得数值。东、西汉之交的刘歆通过做实验,得到圆周率的近似值分别为3.1547、3.1992、3.1498、3.2031、比“径一周三”的古率有所进步。以观察或实验为根据所得到的圆周率是相当粗略的,如果主要用于估计田地面积等,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。目录试验时期6目录第一个用科学方法寻求圆周率数值的人是阿基米德,他提出了一种能够借助数学过程而不是通过测量的、能够把π的值精确到任意精度的方法,开创了圆周率计算

5、的几何方法(亦称古典割圆术)。阿基米德在他的论文《圆的度量》中,用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,证明了(3+(10/71))<π<(3+(1/7)),得出精确到小数点后两位的π值。公元150年左右,希腊天文学家托勒密得出π=3.1416,取得了自阿基米德以来的巨大进步。几何法时期7目录17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。圆周率的计算历史也随之进入了一个新的阶段。这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或

6、无穷连乘积来算π的数值。1593年,韦达给出这一不寻常的公式,这是π的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出π值。此后,类似的公式不断涌现,π的位数也迅速增长。圆周率的计算像马拉松式的竞赛,纪录一个接着一个地被刷新。1948年1月弗格森和伦奇两人共同发表有808位正确小数的π,这是人工计算π的最高记录。分析法时期8目录1946年,世界第一台计算机制造成功,标志着人类历史迈入了电脑时代。计算机的发展一日千里,圆周率的记录也就被频频打破。2

7、0世纪50年代,人们借助计算机算得了10万位小数的π,70年代算到了150万位,到90年代初,用新的计算方法,算到的π值已到4.8亿位。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。当我们把π的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。圆周率的计算历史讲述的是人类的胜利,而不是机器的胜利。电子计算机时期

8、9目录公元263年前后,我国魏晋时期的数学家刘徽提出著名的割圆术,得出π=3.14。后人为纪念刘徽的贡献,将3.14称为徽率。虽然割圆术提出的时间比阿基米德晚一些,但其方法却有更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。刘徽还采用了一种绝妙的精加工办法,可以将割到192边形的几个粗糙的近似值通过

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。