学情分析内容应从哪些方面去考虑

学情分析内容应从哪些方面去考虑

ID:21044676

大小:32.50 KB

页数:9页

时间:2018-10-19

学情分析内容应从哪些方面去考虑_第1页
学情分析内容应从哪些方面去考虑_第2页
学情分析内容应从哪些方面去考虑_第3页
学情分析内容应从哪些方面去考虑_第4页
学情分析内容应从哪些方面去考虑_第5页
资源描述:

《学情分析内容应从哪些方面去考虑》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、学情分析的内容应从哪些方面去考虑一、小学数学教学为什么要渗透数学思想方法?1、基本数学思想方法对学生的发展具有重要意义。日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学的精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用,使学生终身受益。”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其他学科的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观

2、念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值,学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。2、渗透基本数学思想方法是落实新课标精神的需求。数学课程标准修订稿把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验、猜想等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思

3、维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之所在。二、新教材渗透了哪些数学思想方法?教材中渗透数学思想的内在联系通过梳理整套教材,我们可以更深入准确地把握体系中各个知识点之间的联系,从中不难发现:教材编排的特点是从注重具体形象思维逐步过渡到注重抽象思维,很多数学思想方法也是螺旋上升、逐步深入的。首先,各个内容之间存在一定的联系,准确把握各册教材的联结点有助于解读教材。譬如,第七册的合理安排、第十册的找次品问题以及第十二册的抽屉原理,解决问题时都要考虑

4、“至少”的问题,都是在多种解决策略中寻找最优的策略,都要运用推理和渗透优化思想。解决“封闭方阵中的植树问题”时需要用“重叠问题”来诠释;植树问题和鸡兔同笼问题都很注重数学模型的构建,一般都得经历“问题情境——构建模型——解释应用模型”的学习过程……其次,不少教学内容都强调数学文化的渗透。如鸡兔同笼、抽屉原理等问题都需要介绍有关数学知识背景,提高学生学习数学的兴趣。在教学过程中,需要时刻关注情感态度价值观的体现。三、如何有效地渗透数学思想方法?1、以数学思想方法渗透为核心,把握目标定位教学目标是课堂教学的灵魂,它既是教

5、学的出发点,又是教学的归宿。因此,教学目标的制定是否恰当,直接决定着教学过程中目标的达成度,也将直接决定一堂课的教学效果。《标准》指出:“重要的数学概念与数学思想宜逐步深入。”数学思想方法属于默会知识,学生在短时间内,是不可能全部掌握的。需要长期的渗透和不断的体验来感悟。所以,教师要根据学生的年龄特征与认知规律,分段加以落实,有机进行渗透,不能过高地定位教学目标。那么如何准确地进行教学目标定位呢?首先,从教学目标的把握来看,应定位于通过数学教学活动,让学生感受基本数学思想方法,学会运用数学思想方法尝试解决问题,体验解

6、决问题的策略、方法。因为数学课堂教学是面向全体学生的,意图是让每一个学生受到数学思维训练的同时,逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学美的意识。其次,从教学目标的分解上看,还要照顾到个别差异,体现教学目标的层次性。学生学习起点、个性差异的不同,要求我们在教学中处理好面向全体与关注差异的关系,确保每个学生都有所收获,真正做到“下要保底,上不封顶”。显然,立足于数学思想方法的目标定位,必然要求教师充分地挖掘和理解教材中所体现的数学思想方法,在教学时注重让学生通过观察、比较、分析,感悟数学思想方法的魅力。例如,六

7、年级上册《鸡兔同笼》,为了落实渗透数学思想的教学目标,教师应注意以下几点:(1)重点渗透假设思想。沟通直观图示法、列表推算法、假设置换法、金鸡独立法、鸡翅变脚法等方法背后的假设思想。(2)渗透化繁为简的数学思想。《孙子算经》中的“鸡兔同笼”问题数据较大,不利于首次接触该类问题的学生探究,因此教材先从数据较小的例1入手,让学生探索出解决该类问题的一般方法后,再解决数据较大的原题,从而渗透化繁为简的思想。(3)渗透建模思想。可通过“假设——检验——提炼——应用”的过程引导学生掌握“鸡兔同笼”问题的数量关系和方程求解模型,

8、并引导学生应用这一模型解决其他问题。(4)渗透化归思想。让学生意识到许多问题都可以化归为“鸡兔同笼”问题,拓宽对问题的认识,让学生进一步体会到这类问题在日常生活中的广泛应用。2、以数学思想方法引路,整合教学资源。作为课程资源的开发者,教师应合理取舍教学素材,整合教学资源。即结合教学内容和课程目标自觉地选择和整合课程资源,使课程内容与学生的数学教

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。