欢迎来到天天文库
浏览记录
ID:21035551
大小:27.50 KB
页数:6页
时间:2018-10-19
《动点问题2012年中考压轴题(带答案)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、动点问题2012年中考压轴题(带答案)2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25.(2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为_____
2、_cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合
3、时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=12AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC=PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=。 综上所述,当点N落在AB边上时,t=4或t=。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况: ①当2<t<4时,如图(3)a所示。 DP=t-2,PQ=2,∴CQ=
4、PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t。 ∵MN∥BC,∴△AFM∽△ABC。∴FM:BC=AM:AC=1:2,即FM:AM=BC:AC=1:2。 ∴FM=AM=t. ∴ 。 ②当<t<8时,如图(3)b所示。 PE=t-6,∴PC=CM=PE+CE=t-4,AM=AC-CM=12-t,PB=BE-PE=8-t, ∴FM=AM=6-t,PG=2PB=16-2t, ∴ 。 综上所述,S与t的关系式为:。 (4)在点P的整个运动过程中,点H落在线段CD上时t的取值范围是:t=或t=5或 6≤t≤8。 【考
5、点】动点问题上,相似形综合题,勾股定理,相似三角形的判定和性质,梯形和三角形的面积。 【分析】(1)∵在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,∴由勾股定理得AB=cm。 ∵D为边AB的中点,∴AD=cm。 又∵点P在AD上以cm/s的速度运动,∴点P在AD上运动的时间为2s。 ∴当点P在线段DE上运动时,在线段DP上的运动的时间为t-2s。 又∵点P在DE上以1cm/s的速度运动,∴线段DP的长为t-2cm。 (2)当点N落在AB边上时,有两种情况,如图(2)所示,利用运动线段之间的数量关系求出时间t的值。 (3)当正方形
6、PQMN与△ABC重叠部分图形为五边形时,有两种情况,如图(3)所示,分别用时间t表示各相关运动线段的长度,然后利用求出面积S的表达式。 (4)本问涉及双点的运动,首先需要正确理解题意,然后弄清点H、点P的运动过程: 依题意,点H与点P的运动分为两个阶段,如下图所示: ①当4<t<6时,此时点P在线段DE上运动,如图(4)a所示。 此阶段点P运动时间为2s,因此点H运动距离为2.5×2=5cm,而MN=2, 则此阶段中,点H将有两次机会落在线段CD上: 第一次:此时点H由M→H运动时间为(t-4)s,运动距离MH=2.5(t-4), ∴NH=2-MH=12-2.
7、5t。 又DP=t-2,DN=DP-2=t-4, 由DN=2NH得到:t-4=2(12-2.5t),解得t=。 第二次:此时点H由N→H运动时间为t-4-=(t-4.8)s,运动距离NH=2.5(t-4.8)=2.5t-12, 又DP=t-2,DN=DP-2=t-4, 由DN=2NH得到:t-4=2(2.5t-12),解得t=5。 ②当6≤t≤8时,此时点P在线段EB上运动,如图(4)b所示。 由图可知,在此阶段,始终有MH=MC,即MN与CD的交点始终为线段MN的中点,即点H。 综上所
此文档下载收益归作者所有