欢迎来到天天文库
浏览记录
ID:21006548
大小:904.00 KB
页数:14页
时间:2018-10-18
《椭圆经典例题分类汇总》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑椭圆经典例题分类汇总1.椭圆第一定义的应用例1椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当为长轴端点时,,,椭圆的标准方程为:;(2)当为短轴端点时,,,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2已知椭圆的离心率,求的值.分析:分两种情况进行讨论.解:当椭圆的焦点在轴上时,,,得.由,得.当椭圆的焦点在轴上时,,,得.
2、由,得,即.∴满足条件的或.说明:本题易出现漏解.排除错误的办法是:因为与9的大小关系不定,所以椭圆的焦点可能在轴上,也可能在轴上.故必须进行讨论.例3已知方程表示椭圆,求的取值范围.解:由得,且.∴满足条件的的取值范围是,且.说明:本题易出现如下错解:由得,故的取值范围是.专业技术资料word资料下载可编辑出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆.例3已知表示焦点在轴上的椭圆,求的取值范围.分析:依据已知条件确定的三角函数的大小关系.再根据三角函数的单调性,求出的取值范围.
3、解:方程可化为.因为焦点在轴上,所以.因此且从而.说明:(1)由椭圆的标准方程知,,这是容易忽视的地方.(2)由焦点在轴上,知,.(3)求的取值范围时,应注意题目中的条件例5已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.分析:关键是根据题意,列出点P满足的关系式.解:如图所示,设动圆和定圆内切于点.动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即.∴点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:.说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标
4、准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由.解:假设存在,设,由已知条件得,,∴,.∵左准线的方程是,∴.专业技术资料word资料下载可编辑又由焦半径公式知:,.∵,∴.整理得.解之得或.①另一方面.②则①与②矛盾,所以满足条件的点不存在.例2已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示).分析:求面积要结
5、合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限.由余弦定理知:·.①由椭圆定义知:②,则得.故.3.第二定义应用例1椭圆的右焦点为,过点,点在椭圆上,当为最小值时,求点的坐标.分析:本题的关键是求出离心率,把转化为到右准线的距离,从而得最小值.一般地,求均可用此法.解:由已知:,.所以,右准线.专业技术资料word资料下载可编辑过作,垂足为,交椭圆于,故.显然的最小值为,即为所求点,因此,且在椭圆上.故.所以.说明:本题关键在于未
6、知式中的“2”的处理.事实上,如图,,即是到右准线的距离的一半,即图中的,问题转化为求椭圆上一点,使到的距离与到右准线距离之和取最小值.例2已知椭圆上一点到右焦点的距离为,求到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由,得,,.由椭圆定义,,得.由椭圆第二定义,,为到左准线的距离,∴,即到左准线的距离为.解法二:∵,为到右准线的距离,,∴.又椭圆两准线的距离为.∴到左准线的距离为.说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭
7、圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3 已知椭圆内有一点,、分别是椭圆的左、右焦点,点专业技术资料word资料下载可编辑是椭圆上一点.(1) 求的最大值、最小值及对应的点坐标;(2) 求的最小值及对应的点的坐标.分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,
8、则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,,,,设是椭圆上任一点,由,,∴,等号仅当时成立,此时、、共线.由,∴,等号仅当时成立,此时、、共线.建立、的直线方程,解方程组得两交点、.综上所述,点与重合时,取最小值,点与重合时,取最大值.(2)如下图,设是椭圆上任一点,作垂直椭圆右准线,为垂足,由,,∴.由椭圆第二定义知,∴,∴专业技术资料word资料下载可编辑,要使其和最小需有、、共线,即求到右准线距离.右准线方程为.∴到右
此文档下载收益归作者所有