欢迎来到天天文库
浏览记录
ID:21000087
大小:1.50 MB
页数:23页
时间:2018-10-18
《高等数学基础知识点归纳》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。⑶、全体整数组成的集合叫做整数集,记作Z。⑷、全体有理数组成的集合叫做有理数集,记作Q。⑸、全体实数组成的集合叫做实数集,记作R。集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用
2、集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊂B。⑵、相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集,记作AÍB。⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一
3、个集合是它本身的子集。②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)即A∪B={x
4、x∈A,或x∈B}。⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。即A∩B={x
5、x∈A,且x∈B}。⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
6、通常记作U。⑷、补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U23的补集。简称为集合A的补集,记作CUA。即CUA={x
7、x∈U,且x不属于A}。⑸、运算公式:交换律:A∪B=B∪AA∩B=B∩A结合律:(A∪B)∪C=A∪(B∪C)(A∩B)∩C=A∩(B∩C)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C)对偶律:CU(A∪B)=CUA∩CUBCU(A∩B)=CUA∪CUB集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。⑵、用card来表示有限集中元
8、素的个数。例如A={a,b,c},则card(A)=3。⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。以上我们所述的都是有限区间,除此之外,还有无限区间[a,+∞):表示不小于a的实数的全体,也可记为:
9、a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。233、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫
10、做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函
此文档下载收益归作者所有