从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦

从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦

ID:20988863

大小:433.00 KB

页数:7页

时间:2018-10-18

从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦_第1页
从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦_第2页
从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦_第3页
从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦_第4页
从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦_第5页
资源描述:

《从梯子的倾斜程度谈起(二)锐角三角函数——正弦与余弦》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一章直角三角形的边角关系1.从梯子的倾斜程度谈起(二)一、学生知识状况分析本课是第九册第一章第一节《从梯子的倾斜程度谈起》的第二课时,由于学生在前一节课学习过有关正切的知识,但对于直角三角形只能停留在两直角边之间的关系,那么,直角三角形中斜边与直角边之间是否也存在着一定的关系呢?本节课首先通过实验的方法,让学生真正领会到直角三角形中斜边与直角边之间确实也存在着一定的关系。二、教学任务分析本课是第九册第一章第一节《从梯子的倾斜程度谈起》的第二课时,是通过实验的方法,让学生真正领会到直角三角形中斜边与直角边之间确实也存在着一定的关系,从而,探索出直角三角形中,一个锐角的直角边与

2、斜边的比是随锐角的大小变化而变化的。在试验过程中,不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生开展讨论,给学生提供成果展示的机会,培养学生的交流能力及学习数学的自信心.在学习的过程中,有些活动学生很容易就能得到结论,但要重视试验的作用。鼓励每一位学生亲自试验,要注意克服想当然的习惯、缺乏主动实践探索的意识,鼓励学生验证试验结果的合理性。本节课教学目标如下:教学目标:(一)教学知识点:1.经历探索直角三角形中边角关系的过程.理解正弦、余弦的意义和与现实生活的联系.2.能够用sinA,cosA表示直角三角形中斜边与直角边的比,表示生

3、活中物体的倾斜程度,能够用正弦、余弦进行简单的计算.(二)能力训练要求:1.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求:1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点:理解正弦、余弦的数学意义,密切数学与生活的联系.教学难点:理解正弦、余弦的数学意义,并用它来表示两边的比.三、教学过程分析本节课设计了六个教学环节:第一环节创设情境;第二环节:探求新知;第三环节:随堂练习;第四环节:课堂小结;第五环节:

4、课堂体会;第六环节:布置作业。第一环节创设情境(1)我们在上一节课学习了直角三角形中的一种边与角的关系:锐角的三角函数--正切函数。即:在直角三角形中,若一个锐角的对边与邻边的比值是一个定值,那么这个角的值也随之确定.在Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,当Rt△ABC中的一个锐角A确定时,其它边之间的比值也确定吗?今天这节课,我们就来学习第九册(下)第一章:直角三角形的边角关系:正弦与余弦。(2)上节课,我们研究了“陡”这个字,明确了梯子摆放的“陡”与“缓”,是与梯顶、梯脚到墙角的距离比有关的。下面请同学们模拟实验,是否还与梯长与梯顶或梯脚到

5、墙角的距离比有关呢?第二环节探求新知1、摆一摆请大家拿出我们课前准备的模拟墙体和两架模拟梯子:(1)首先,把两架梯子摆在同一面墙上,使其中一架梯子比较陡。(2)我们在摆的过程中,要仔细观察,认真思考,探索一下,要想把一个梯子摆得陡一些,除了与倾斜角的大小有关之外,还与那些因素有关呢?(3)通过观察,我们可以得到:要想把一个梯子摆得陡一些,与梯子的对边与邻边有关。那么是不是单纯地与倾斜角的对边或邻边有关呢?为了探索这个一般规律,请同学们接着来摆梯子,使其中一架梯子比较陡。这一次,我们要边摆,边度量每个梯子倾斜角的对边与邻边,并计算每个倾斜角的对边与邻边的比值,之后每组填好实验报

6、告。(展示数据及结论)(4)实验结论:梯子越陡,倾斜角的对边与斜边的比值越大,邻边与斜边的比值越小。2、想一想:上节课,我们研究了:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,我们可以用一种巧妙的方法得到梯子的倾斜程度:在梯子上任选一点B1,、B2,如图1-3,通过测量B1C1及AC1,算出它们的比,来说明梯子的倾斜程度;也可通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度。在这里,我们能否类似的研究呢?(1)Rt△AB1C1和Rt△AB2C2有什么关系?(2)和有什么关系?和有什么关系?(3)如果改变梯子的位置呢?由此你得出什么结论?3

7、、有关的概念在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比,叫做∠A的正弦。记作sinA.∠A的邻边与斜边的比也随之确定,这个比叫做∠A的余弦。记作cosA.注意的问题:(1)sinA,cosA中常省去角的符号“∠”。(2)sinA,cosA没有单位,它表示一个比值。(3)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”。(4)在初中阶段,sinA,cosA中,∠A是一个锐角。4、议一议:梯子的倾斜程度与sinA,cosA的关系:梯子AB越陡,sinA的值越大,co

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。