欢迎来到天天文库
浏览记录
ID:20977728
大小:168.00 KB
页数:3页
时间:2018-10-18
《海陵区2013-2014学年度第一学期期末调研测试九年级数学试题答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、初三数学期末调研参考答案(其他解法参照得分)一、选择题:BACCAB二、填空题:7.8.30°9.10.相交11.-4或712.13.12π14.15.16.三.解答题:17.(1)原式=(过程4分结论1分)(2)原式=3(过程4分结论1分)18.(1)4a+4··················3分·············4分(2)由题意的:·············5分此时方程为解得:,····················8分19.如图所示:点E即为所求,BE=DE(注:作一个角等于已知角和垂直平分线各3分)20.(1
2、)178··········2分178···········4分(2)··········6分············8分甲理由略··················10分21.(1)∵AC⊥CD,∴∠ACD=90°,∴AC2+CD2=AD2,而CD=60cm,AC=45cm,∴AD=75cm··················4分答:车架档AD的长为75cm;···············5分(2)过E作EF⊥AB于F点,如图,在Rt△AEF中,∠EAF=75°,AE=AC+CE=45+20=65,∴EF=AE•sin75°≈
3、65×0.9659≈63(cm),··················9分答:车座点E到车架档AB的距离为63cm.··················10分22.(1)下降0.2元后,卖出600个烧饼,每个利润为1.3元,每天利润为600×1.3=780元············4分(2)由题意得:,化简得:·············6分解得:,·············9分答:略··········10分23.(1)∵四边形ABCD是矩形,∴OA=OB=OC=OD且AC=BD·················2分∵AE=BF
4、=CG=DH,∴OE=OF=OG=OH,∴四边形EFGH是平行四边形··················4分又EG=FH∴四边形EFGH是矩形·················5分(2)∵OH=OG又HG=OG,∴三角形OGH是等边三角形·················7分∴∠CDO=∠GHO=60°,而CD=AB=2cm∴AD=CDtan=60°=(cm)△ADC面积为(cm2)················9分∵△ADO与△ODC等底等高,∴△ADO的面积是cm2·······10分24.(1)连接OD.∵CG是切线,∴
5、∠GCO=90°,即CG⊥CO·················2分∵OA=OD,△OAD是等腰三角形,又AF=FD,∴CF⊥AD,∴CG∥AD··················4分(2)连接AC,∵AB⊥CD∴弧AC=弧AD∴AC=AD,同理AC=CD,∴△ACD是等边△,∴∠FCD=30°∴,∴E是OB的中点···············8分(3)∵AB=8,∴OC=4,OE=2,在Rt△OCE中,∴,∴∴,∴··················12分25.(1)分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F.由题
6、意得:D(2,4)··················1分∴BD=3,∵BC=4,∴可求出:CD=5,可证得:△CQE∽△CDF∴,∴··················3分∴··················4分(2)不存在··················5分∵,令解得··············7分,此时Q与C重合,不能构成三角形.··············8分(3)由△CQE∽△CDF,,,,,①当时,,解得··········10分②当时,,··················12分答:当或时,△DPQ是一个以D
7、P为腰的等腰三角形.26.(1)过O作OE⊥CF于E,∵∠OCF=30°∴OE=AB/2=2,又⊙O的半径是2,∴⊙O与CF相切············4分(2)连结QA、QB,OA=AC=2,△COE是直角三角形,故AE=CO/2=2········6分cos∠AEQ=3/4得cos∠ABQ=3/4,AB=4,∴BQ=3,由△AED∽△BQD得BD/DE=QB/AE=3/2·················9分(3)设AP=a(08、=4(4-2a+a2)>0,方程总有解,即不论P在何处,AD×BD=AP×PC总能成立·················12分又由△AED∽△BQD可得ED×QD=AD×BD,∴不论P在何处,总存在弦EQ使得ED×QD=AP×PC成立··············
8、=4(4-2a+a2)>0,方程总有解,即不论P在何处,AD×BD=AP×PC总能成立·················12分又由△AED∽△BQD可得ED×QD=AD×BD,∴不论P在何处,总存在弦EQ使得ED×QD=AP×PC成立··············
此文档下载收益归作者所有