逻辑学在人工智能中的应用及其前景研究综述

逻辑学在人工智能中的应用及其前景研究综述

ID:20971748

大小:56.50 KB

页数:8页

时间:2018-10-18

逻辑学在人工智能中的应用及其前景研究综述_第1页
逻辑学在人工智能中的应用及其前景研究综述_第2页
逻辑学在人工智能中的应用及其前景研究综述_第3页
逻辑学在人工智能中的应用及其前景研究综述_第4页
逻辑学在人工智能中的应用及其前景研究综述_第5页
资源描述:

《逻辑学在人工智能中的应用及其前景研究综述》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、逻辑学在人工智能中的应用及其前景研究综述一、人工智能科学诞生的逻辑渊源1.“思维与计算”同一的思想是人工智能科学兴起的重要的思想根源自从电子计算机面世,人工智能的研究就有了强力的支撑。追溯它的历史,我们发现历史上一些伟大的科学家和思想家为今天人工智能的研究作了充分的准备。古希腊伟大的哲学家、思想家亚里士多德开始采用符号组合的方法表示逻辑推演,并为形式逻辑奠定了基础。12世纪末13世纪初西班牙神学家和逻辑学家赖蒙德•卢里(RaymondLull)试图得到一种逻辑演算他设计了历史上第一台能把基本概念组合成各种命题的原始逻辑机。这

2、种逻辑机是以机械方式来模拟和表达人类思维的一次大胆的尝试,它已初步揭示了人类把思维和计算看作是同一的思想的重要性。17世纪,随着生产力的发展,自然科学特别是数学得到了长足的进步。因而一些思想家试图用数学方法来研究思维,把思维过程转换成数学的计算。法国哲学家笛卡尔就试图把几何学、代数学和逻辑学三门学科的优点统一于一体从而提出了普遍数学方法的逻辑。法国物理学家、数学家巴斯制成了世界第一台会演算的机械加法器。英国哲学家霍布斯把思维解释为一些特殊的数学推演的总和。这些表明,人们对于“思维与计算’的认识更加深刻、清晰和明确化。到了18

3、世纪,德国数学家、哲学家莱布尼茨继承了思维可计算的思想,提出了建立理性演算的设想,他称为“通用代数”。他提出,在这样的演算中,一切推理的正确性将归于计算。他还改进了巴斯卡的加法数字计算器,作出了能做四则运算的手摇计算器。这些成果是计算机模拟人类思维过程走向成功的第一步。它深刻地揭示了逻辑与计算机的内在联系,拉开了逻辑与人工智能科学相结合的序幕。2.布尔代数是电子计算机诞生和发展的逻辑基础布尔代数又称逻辑代数,是英国逻辑学家布尔把代数的方法应用于逻辑学研究所得的逻辑成果。可以说,没有这一成果,就没有现代的电子计算机的诞生。布尔

4、代数是逻辑史上第一个逻辑演算。它是关于0和1两个数的逻辑代数。布尔把它解释为类演算和命题演算并给出对类或命题作合取、析取和否定三种运算形式。对于类和命题,1和0分别对应于“全”与“空”、“真”与“假”。这样,布尔逻辑代数被解释成二值代数系统。布尔的二值逻辑思想对于计算机硬件的设计具有重要意义。这主要表现在它仅有两个数值0和1。只要能够设法区别两个状态(如高压和低压,正向电流和负向电流,通和不通)便可指定其中一种表示0,另一种表示1,这样就可以利用二进制来表示一切数了。同时计算机硬件的工作原理也是应用布尔的二值逻辑思想。计算机

5、中的主要硬件如运算器、控制器等都是运用一些逻辑电路构成的。逻辑电路中,最基本的电路是门电路,门电路与布尔代数中的各种逻辑运算有着惊人的同构性。门电路共有“与”、“或”、“非”三种,分别完成合取、析取和否定三种逻辑运算。此外,由这三种电路还可以组成各种复合电路。3.形式系统的建立是计算机科学、人工智能科学发展的强大动力形式化、形式系统这两个逻辑术语,对于计算机科学、人工智能科学的发展,始终有着巨大的影响。正是对“计算”这一概念的形式化研究,导致了第一个计算模型一图灵机的诞生,同时为专家系统与知识工程的建立、为知识的形式表示及定

6、理的机器证明铺平了道路;X-演算系统为第一个人工智能语言LISP奠定了逻辑基础;目前很受一些人青睐、甚至被推举为第五代计算机程序设计语言的PROLOG,就是一个典型的符号逻辑形式系统。形式系统的建立有助于提高一个理论的严格性和精确性,有助于排除理论思维的谬误。因此,它为人工智能科学提供了一种重要的推理方法,从而推动了人工智能科学的发展。从人工智能系统中,归纳反演推理、规则演绎系统、专家系统、知识工程等都应用形式系统进行定理证明和问题求解。形式系统从人工智能中的应用,不仅可以保证推理结果的正确性,使计算机较为精确地表达知识,而

7、且,由于它拥有通用的逻辑演算方法和推理规则,又便于计算机进行操作,它使得计算机中知识的存储、检索、运用、增删和修改简便化、方便化、容易化,因此,从人工智能科学发展的早期至今仍被广泛应用。二、人工智能科学的发展有待于逻辑学的突破人工智能的实现,首先要具备几个条件才能进行。一是要把处理的问题都化成一个符号序列表示;再者,要给出处理这些符号的规则。因此,传统人工智能所解决的问题完全是一种逻辑思维的模拟,总是完全限于人的逻辑思维所能解决的范围之内。目前,人工智能要进行人脑智能模拟,它的难点不在于人脑所进行的各种必然性推理,而是最能体

8、现人的智能特征的能动性、创造性等不确定性思维,包括学习、抉择、尝试、修正、推理诸因素。于是逻辑学就必须着重研究人的思维中最能体现其能动性特征的各种不确定性推理。1.归纳推理、类比推理及模糊推理人类智能的本质特征和最高表现是创造。计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对归

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。