欢迎来到天天文库
浏览记录
ID:20891444
大小:437.64 KB
页数:31页
时间:2018-10-17
《圆锥曲线专项突破》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、圆锥曲线专项突破1.已知抛物线C:的焦点为原点,C的准线与直线的交点M在x轴上,与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).(Ⅰ)求抛物线C的方程;(Ⅱ)求实数p的取值范围;(Ⅲ)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.2.如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且
2、CD
3、=
4、AA1
5、.椭圆的一条弦AC交双曲线于E,设,当时,求双曲线的离心率e的取值范围.3.已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y
6、轴正半轴上).若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;若角A为,AD垂直BC于D,试求点D的轨迹方程.4.如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.(1)设点分有向线段所成的比为,证明:;(2)设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.5.已知动点P(p,-1),Q(p,),过Q作斜率为的直线l,PQ中点M的轨迹为曲线C.(1)证明:l经过一个定点而且与曲线C一定有两个公共点;(2)若(1)中的其中一个公共点为A,证明:AP是曲线C的切线;(3)设直线AP的倾斜角为,AP与l的
7、夹角为,证明:或是定值.6.在平面直角坐标系内有两个定点和动点P,坐标分别为、,动点满足,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,直线与曲线交于A、B两点,O是坐标原点,△ABO的面积为,(1)求曲线C的方程;(2)求的值。7.已知双曲线的左右两个焦点分别为,点P在双曲线右支上.(Ⅰ)若当点P的坐标为时,,求双曲线的方程;(Ⅱ)若,求双曲线离心率的最值,并写出此时双曲线的渐进线方程.8.若F、F为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足;.(1)求该双曲线的离心率;(2)若该双曲线过N(2,),求双曲线的方程;
8、(3)若过N(2,)的双曲线的虚轴端点分别为B、B(B在y轴正半轴上),点A、B在双曲线上,且时,直线AB的方程.9.以O为原点,所在直线为轴,建立如所示的坐标系。设,点F的坐标为,,点G的坐标为。(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。10.已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;
9、(Ⅱ)若直线与(Ⅰ)中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求△FOH的面积的取值范围。11.如图所示,O是线段AB的中点,
10、AB
11、=2c,以点A为圆心,2a为半径作一圆,其中。AOB(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。12.设O为坐标原点,曲线上有两点P、Q满足关于直线对称,又以PQ
12、为直径的圆过O点.(1)求的值;(2)求直线PQ的方程.13.在平面直角坐标系中,若,且,(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值。14.已知双曲线(a>0,b>0)的右准线一条渐近线交于两点P、Q,F是双曲线的右焦点。(I)求证:PF⊥;(II)若△PQF为等边三角形,且直线y=x+b交双曲线于A,B两点,且,求双曲线的方程;(III)延长FP交双曲线左准线和左支分别为点M、N,若M为PN的中点,求双曲线的离心率e。15.已知又曲线在左右顶点分
13、别是A,B,点P是其右准线上的一点,若点A关于点P的对称点是M,点P关于点B的对称点是N,且M、N都在此双曲线上。(I)求此双曲线的方程;(II)求直线MN的倾斜角。16.如图,在直角坐标系中,点A(-1,0),B(1,0),P(x,y)()。设与x轴正方向的夹角分别为α、β、γ,若。(I)求点P的轨迹G的方程;(II)设过点C(0,-1)的直线与轨迹G交于不同两点M、N。问在x轴上是否存在一点,使△MNE为正三角形。若存在求出值;若不存在说明理由。17.设椭圆过点,且焦点为。(1)求椭圆的方程;(2)当过点的动直线与椭圆相交与两不同点A、B时,在线段
14、上取点,满足,证明:点总在某定直线上。18.平面直角坐标系中,O为坐标原点,给定两点A(1,0
此文档下载收益归作者所有