资源描述:
《工程问题应用题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、工程问题 工程问题的基本量有:工作量、工作效率、工作时间。关系式为:①工作量=工作效率×工作时间。②工作时间=,③工作效率=。 工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。②如果以时间作相等关系,完成同一工作的时间差=多用的时间。 在工程问题中,还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。 例4.加工某种工件,甲单独作要20天完成,乙只要10就
2、能完成任务,现在要求二人在12天内完成任务。问乙需工作几天后甲再继续加工才可正好按期完成任务? 讲评:将全部任务的工作量看作整体1,由甲、乙单独完成的时间可知,甲的工作效率为,乙的工作效率为,设乙需工作x天,则甲再继续加工(12-x)天,乙完成的工作量为,甲完成的工作量为,依题意有 +=1 ∴x=8 例5.收割一块麦地,每小时割4亩,预计若干小时割完。收割了后,改用新式农具收割,工作效率提高到原来的1.5倍。因此比预计时间提前1小时完工。求这块麦地有多少亩? 讲评:设麦地有x亩,即总工作量为x亩,
3、改用新式工具前工作效率为4亩/小时,割完x亩预计时间为小时,收割亩工作时间为/4=小时;改用新式工具后,工作效率为1.5×4=6亩/小时,割完剩下亩时间为/6=小时,则实际用的时间为(+)小时,依题意“比预计时间提前1小时完工”有 -(+)=1 ∴x=36 例6.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。现在三管齐开,需多少时间注满水池? 讲评:由题设可知,甲、乙、丙工作效率分别为、
4、、-(进水管工作效率看作正数,排水管效率则记为负数),设x小时可注满水池,则甲、乙、丙的工作量分别为,、-,由三水管完成整体工作量1,有 +-=1 ∴ x=5工程问题的基本关系:工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率注意:一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=11、做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,问:①甲做1小时完成全部工作量的几分之几?②乙做1小时完成全部工作量的几分之几?③甲、乙合
5、做1小时完成全部工作量的几分之几?④甲做x小时完成全部工作量的几分之几?⑤甲、乙合做x小时完成全部工作量的几分之几?⑥甲先做2小时完成全部工作量的几分之几?乙后做3小时完成全部工作量的几分之几?甲、乙再合做x小时完成全部工作量的几分之几?三次共完成全部工作量的几分之几?结果完成了工作,则可列出方程:2、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?解:设还需要x天完成,依题意,得解得x=5答:还需要5天完成3、食堂存煤若干吨,原来每天烧煤
6、4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.解:设原存煤量为x吨,依题意,得解得x=55答:原存煤量为55吨4、一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?解:设再过x小时可将水池注满,依题意,得解得x=4答:再过4小时可将水池注满。6、一项工程300人共做,需要40天,如果要求提前10天完成,问需要增多少人?解:由已知每人每天完成,设需要
7、增x人,则列出方程为解得x=100答:需要增100人7、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?答:4解:设甲、乙两个龙头齐开x小时。由已知得,甲每小时灌池子的,乙每小时灌池子的。列方程:×0.5+(+)x=,+x=,x=x==0.5x+0.5=1(小时)答:一共需要1小时。8、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把
8、空水池灌满?解:令水箱为1,进水管每小时注水,出水管每小时放水,设两水管同时打开,经过x小时可把空水池灌满则由题意列出方程为(-)x=1,解得x=129、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?,X=78010、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?1-6()=XX=2.411、已知甲、乙二人合作一项工程,