椭圆典型题型归纳

椭圆典型题型归纳

ID:20761140

大小:550.52 KB

页数:7页

时间:2018-10-15

椭圆典型题型归纳_第1页
椭圆典型题型归纳_第2页
椭圆典型题型归纳_第3页
椭圆典型题型归纳_第4页
椭圆典型题型归纳_第5页
资源描述:

《椭圆典型题型归纳》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、椭圆典型题型归纳题型一.定义及其应用例1.已知一个动圆与圆相内切,且过点,求这个动圆圆心的轨迹方程;练习:1.方程对应的图形是()A.直线B.线段C.椭圆D.圆2.方程对应的图形是()A.直线B.线段C.椭圆D.圆4.如果方程表示椭圆,则的取值范围是5.过椭圆的一个焦点的直线与椭圆相交于两点,则两点与椭圆的另一个焦点构成的的周长等于;6.设圆的圆心为,是圆内一定点,为圆周上任意一点,线段的垂直平分线与的连线交于点,则点的轨迹方程为;题型二.椭圆的方程(一)由方程研究曲线例1.方程的曲线是到定点和的距离之和等于的点的轨迹

2、;(二)分情况求椭圆的方程例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点,求椭圆的方程;(三)用待定系数法求方程例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点、,求椭圆的方程;例4.求经过点且与椭圆有共同焦点的椭圆方程;第7页注:一般地,与椭圆共焦点的椭圆可设其方程为;(四)定义法求轨迹方程;例5.在中,所对的三边分别为,且,求满足且成等差数列时顶点的轨迹;(五)相关点法求轨迹方程;例6.已知轴上一定点,为椭圆上任一点,求的中点的轨迹方程;(六)直接法求轨迹方程;例7.设动直线垂直于轴,且与椭圆

3、交于两点,点是直线上满足的点,求点的轨迹方程;(七)列方程组求方程例8.中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求此椭圆的方程;题型三.焦点三角形问题例1.已知椭圆上一点的纵坐标为,椭圆的上下两个焦点分别为、,求、及;题型四.椭圆的几何性质例1.已知是椭圆上的点,的纵坐标为,、分别为椭圆的两个焦点,椭圆的半焦距为,则的最大值与最小值之差为第7页例2.椭圆的四个顶点为,若四边形的内切圆恰好过焦点,则椭圆的离心率为;例3.若椭圆的离心率为,则;例4.若为椭圆上一点,、为其两个焦点,且,,则椭圆的离心率为题

4、型七.求离心率例1.椭圆的左焦点为,,是两个顶点,如果到直线的距离为,则椭圆的离心率例2.若为椭圆上一点,、为其两个焦点,且,,则椭圆的离心率为例3.、为椭圆的两个焦点,过的直线交椭圆于两点,,且,则椭圆的离心率为;题型八.椭圆参数方程的应用例1.椭圆上的点到直线的距离最大时,点的坐标例2.方程()表示焦点在轴上的椭圆,求的取值范围;题型九.直线与椭圆的关系(1)直线与椭圆的位置关系例1.当为何值时,直线与椭圆相切、相交、相离?第7页例2.曲线()与连结,的线段没有公共点,求的取值范围。例3.过点作直线与椭圆相交于两点

5、,为坐标原点,求面积的最大值及此时直线倾斜角的正切值。例4.求直线和椭圆有公共点时,的取值范围。(二)弦长问题例1.已知椭圆,是轴正方向上的一定点,若过点,斜率为1的直线被椭圆截得的弦长为,求点的坐标。例2.椭圆与直线相交于两点,是的中点,若,为坐标原点,的斜率为,求的值。例3.椭圆的焦点分别是和,过中心作直线与椭圆交于两点,若的面积是20,求直线方程。第7页(三)弦所在直线方程例1.已知椭圆,过点能否作直线与椭圆相交所成弦的中点恰好是;例2.已知一直线与椭圆相交于两点,弦的中点坐标为,求直线的方程;例3.椭圆中心在原

6、点,焦点在轴上,其离心率,过点的直线与椭圆相交于两点,且C分有向线段的比为2.(1)用直线的斜率表示的面积;(2)当的面积最大时,求椭圆E的方程.例4.已知是椭圆上的三点,为椭圆的左焦点,且成等差数列,则的垂直平分线是否过定点?请证明你的结论。(四)关于直线对称问题例1.已知椭圆,试确定的取值范围,使得椭圆上有两个不同的点关于直线对称;第7页例2.已知中心在原点,焦点在轴上,长轴长等于6,离心率,试问是否存在直线,使与椭圆交于不同两点,且线段恰被直线平分?若存在,求出直线倾斜角的取值范围;若不存在,请说明理由。题型

7、十.最值问题F2F1M1M2例1.若,为椭圆的右焦点,点M在椭圆上移动,求的最大值和最小值。结论1:设椭圆的左右焦点分别为,为椭圆内一点,为椭圆上任意一点,则的最大值为,最小值为;例2.,为椭圆的右焦点,点M在椭圆上移动,求的最大值和最小值。论2设椭圆的左右焦点分别为,为椭圆外一点,为椭圆上任意一点,则的最大值为,最小值为;2.二次函数法例3.求定点到椭圆上的点之间的最短距离。第7页结论3:椭圆上的点到定点A(m,0)或B(0,n)距离的最值问题,可以用两点间距离公式表示︱MA︱或︱MB︱,通过动点在椭圆上消去y或x,

8、转化为二次函数求最值,注意自变量的取值范围。3.三角函数法例4.求椭圆上的点到直线的距离的最值;结论4:若椭圆上的点到非坐标轴上的定点的距离求最值时,可通过椭圆的参数方程,统一变量转化为三角函数求最值。4.判别式法例4的解决还可以用下面方法结论5:椭圆上的点到定直线l距离的最值问题,可转化为与l平行的直线m与椭圆相切的问题,利用判

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。