含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)

ID:20748493

大小:599.50 KB

页数:8页

时间:2018-10-15

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)_第1页
含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)_第2页
含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)_第3页
含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)_第4页
含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)_第5页
资源描述:

《含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按项的系数的符号分类,即;例1解不等式:分析:本题二次项系数含有参数,,故只需对二次项系数进行分类讨论。解:∵解得方程两根∴当时,解集为当时,不等式为,解集为当时,解集为例2解不等式分析因为,,所以我们只要讨论二次项系数的正负。解当时,解集为;当时,解集为二、按判别式的符号分类,即;例3解不等式分析本题中由于的系数大于0,故只需考虑与根的情况。解:∵∴当即时,解集为;当

2、即Δ=0时,解集为;当或即,此时两根分别为,,显然,∴不等式的解集为例4解不等式解因所以当,即时,解集为;当,即时,解集为;当,即时,解集为R。三、按方程的根的大小来分类,即;例5解不等式分析:此不等式可以分解为:,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:,令,可得:∴当或时,,故原不等式的解集为;当或时,,可得其解集为;当或时,,解集为。例6解不等式,分析此不等式,又不等式可分解为,故只需比较两根与的大小.解原不等式可化为:,对应方程的两根为,当时,即,解集为;当时,即,解集为

3、含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立;2)对恒成立例1

4、:若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)时,只需,所以,。例2.已知函数的定义域为R,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,即有解得。所以实数的取值范围为。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例3、若时,不等式

5、恒成立,求的取值范围。解:设,则问题转化为当时,的最小值非负。(1)当即:时,又所以不存在;(2)当即:时,又(3)当即:时,又综上所得:例4.函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得注:本题还可将变形为,讨论其单调性从而求出最小值。例5:在ABC中,已知恒成立,求实数m的范围。解析:由,,恒成立,,即恒成立,例6:求使不等式恒成立的实数a的范围。解析:由于函,显然函数有最大值,。三、分离变量法若所给的不等式能通过

6、恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立。例7、已知时,不等式恒成立,求的取值范围。解:令,所以原不等式可化为:,要使上式在上恒成立,只须求出在上的最小值即可。例8、已知函数,若对任意恒有,试确定的取值范围。解:根据题意得:在上恒成立,即:在上恒成立,设,则当时,所以例9.已知函数时恒成立,求实数的取值范围。解:将问题转化为对恒成立。令,则由可知在上为减函数,故∴即的取值范围为。

7、注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。四、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。例10.对任意,不等式恒成立,求的取值范围。分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。解:令,则原问题转化为恒成立()。当时,可得,不合题意。当时,应有解之得。故的取值范围为。注:一般地,一次函数在上恒有的充要条件为。例11、若不等式对满足的所有都成立,求的取值范围。解:设,对满

8、足的,恒成立,解得:五、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1)函数图象恒在函数图象上方;2)函数图象恒在函数图象下上方。x-2-4yO-4例12.设,,若恒有成立,求实数的取值范围.分析:在同一直角坐标系中作出及的图象如图所示,的图象是半圆的图象是平行的直

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。