欢迎来到天天文库
浏览记录
ID:20657062
大小:844.50 KB
页数:7页
时间:2018-10-14
《贵州省贵阳市花溪第二中学九年级数学竞赛讲座 19第十九讲 转化灵活的圆中角 》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、【例题求解】【例1】如图,直线AB与⊙O相交于A,B再点,点O在AB上,点C在⊙O上,且∠AOC=40°,点E是直线AB上一个动点(与点O不重合),直线EC交⊙O于另一点D,则使DE=DO的点正共有个.思路点拨在直线AB上使DE=DO的动点E与⊙O有怎样的位置关系?分点E在AB上(E在⊙O内)、在BA或AB的延长线上(E点在⊙O外)三种情况考虑,通过角度的计算,确定E点位置、存在的个数.注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.【例2】如图,已知△ABC为等腰直角三形,D为斜边BC的
2、中点,经过点A、D的⊙O与边AB、AC、BC分别相交于点E、F、M,对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BF×BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个B.3个C.4个D.5个思路点拨充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.第7页(共7页)注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.【例3】如图,已知四边形ABCD外接⊙O的半径为5,对角线AC与BD的交点为E,且A
3、B2=AE×AC,BD=8,求△ABD的面积.思路点拨由条件出发,利用相似三角形、圆中角可推得A为弧BD中点,这是解本例的关键.【例4】如图,已知AB是⊙O的直径,C是⊙O上的一点,连结AC,过点C作直线CD⊥AB于D(AD4、述结论在E点运动的情况下是否成立,依题意准确画出图形是关键.注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.【例5】第7页(共7页)如图,圆内接六边形ABCDEF满足AB=CD=EF,且对角线AD、BE、CF相交于一点Q,设AD与CF的交点为P.求证:(1);(2).思路点拨解本例的关键在于运用与圆相关的角,能发现多对相似三角形.(1)证明△QDE∽△ACF;(2)易证,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.注:有些几何问题虽然表面与圆无5、关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:(1)利用圆的定义判定;(2)利用圆内接四边形性质的逆命题判定.学历训练1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2=.3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为,AB的长为,用的6、代数式表示,=.第7页(共7页)5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于()A.120°B.136°C.144°D.150°6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于()A.20°B.30°C.40°D.50°7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=,BC=2,则∠D的度数为()A.60°B.120°C.135°D.150°⌒⌒8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、7、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中正确的个数是()A.1B.2C.3D.49.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC·BC=BE·CD;(1)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)求证:FB2=FA8、FD;(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tan∠APB·tan∠CPD=.第7页(共7
4、述结论在E点运动的情况下是否成立,依题意准确画出图形是关键.注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.【例5】第7页(共7页)如图,圆内接六边形ABCDEF满足AB=CD=EF,且对角线AD、BE、CF相交于一点Q,设AD与CF的交点为P.求证:(1);(2).思路点拨解本例的关键在于运用与圆相关的角,能发现多对相似三角形.(1)证明△QDE∽△ACF;(2)易证,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.注:有些几何问题虽然表面与圆无
5、关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:(1)利用圆的定义判定;(2)利用圆内接四边形性质的逆命题判定.学历训练1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2=.3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为,AB的长为,用的
6、代数式表示,=.第7页(共7页)5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于()A.120°B.136°C.144°D.150°6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于()A.20°B.30°C.40°D.50°7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=,BC=2,则∠D的度数为()A.60°B.120°C.135°D.150°⌒⌒8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、
7、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中正确的个数是()A.1B.2C.3D.49.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC·BC=BE·CD;(1)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)求证:FB2=FA
8、FD;(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tan∠APB·tan∠CPD=.第7页(共7
此文档下载收益归作者所有