欢迎来到天天文库
浏览记录
ID:20551229
大小:80.00 KB
页数:2页
时间:2018-10-13
《选修4-5:《不等式选讲》全套教案系列9》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、选修4-5不等式选讲课题: 第9课时不等式的证明方法(反证法)三维目标:重点难点:教学设计:一、引入:前面所讲的几种方法,属于不等式的直接证法。也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法是间接证明的一种基本方法。反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。具
2、体地说,反证法不直接证明命题“若p则q”,而是先肯定命题的条件p,并否定命题的结论q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。利用反证法证明不等式,一般有下面几个步骤:第一步分清欲证不等式所涉及到的条件和结论;第二步作出与所证不等式相反的假定;第三步从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。二、范例分析:例1、已知,求证:(且)例1、设,求证证明:假设,则有,从而因为,所以,这与题设条件矛盾
3、,所以,原不等式成立。例2、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则(1)另一方面,由绝对值不等式的性质,有选修4-5不等式选讲(2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方
4、法有什么特点?例3、设0,(1-b)c>,(1-c)a>,则三式相乘:ab<(1-a)b•(1-b)c•(1-c)a<①又∵00,ab+bc+ca>0,abc>0,求证:a,b,c>0证:设a<0,∵abc>0,∴bc<0又由a+b+c>0,则b+c=-a>0∴ab+bc+ca=a
5、(b+c)+bc<0与题设矛盾又:若a=0,则与abc>0矛盾,∴必有a>0同理可证:b>0,c>0三、小结:四、练习:1、利用反证法证明:若已知a,b,m都是正数,并且,则2、设00,且x+y>2,则和中至少有一个小于2。提示:反设≥2,≥2∵x,y>0,可得x+y≤2与x+y>2矛盾。五、作业:
此文档下载收益归作者所有