利用开关器件提高pfc效率实现

利用开关器件提高pfc效率实现

ID:20469277

大小:26.50 KB

页数:3页

时间:2018-10-13

利用开关器件提高pfc效率实现_第1页
利用开关器件提高pfc效率实现_第2页
利用开关器件提高pfc效率实现_第3页
资源描述:

《利用开关器件提高pfc效率实现》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、电源招聘专家利用开关器件提高PFC效率的实现为了满足能源之星(ENERGYSTAR)等规范的要求以及消费者降低碳排放的愿望,功率电子产品设计团队正在不断努力提高系统效率,以求尽量接近额定100%效率的终极目标。此外,目前调节器实际上需要在电源第一级采用功率因数校正(PowerFactorCorrection,PFC),以尽量提高功率因数(PF),减少电力线的损耗。功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1.功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功

2、率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。方法之一就是运用被动PFC的低成本解决方案,但是这一方案需要一个笨重的大体积LC滤波器。主动PFC广泛用于减少系统滤波器电感线圈的尺寸与重量。因此,增加效率与功率密度是主动PFC方案的关键设计因素。对于大功率交-直流变换器来说,连续传导模式(CCM)升压型主动PFC拓扑结构更受欢迎。与非连续传导模式(DCM)和临界传导模式CRM)不同的是,CCMPFC产生的波纹电流更小,可简化EMI滤波器设计以及保持小负荷下的稳定性。因此C

3、CMPFC不仅广泛用于服务器与远程通信的电源供给,而且可用于平面显示器的电源供给。按照功率变换器PFC改善功率密度的设计趋势,设计人员必须减少系统损耗与整个系统的尺寸、重量,或者增加开关频率,集成有源元件。一种新型的MOSFET/二极管组合可以实现较高的功效,减少开关损耗。并且通过降低MOSFET的导通电阻,提高其开关速度完成CCMPFC控制器的设计。上述性能的改善,都离不开一种具有低反向恢复电荷(QRR)的SiC肖特基二极管。下面在一个400WCCMPFC应用当中,将其与常用的硅Si二极管/平面型MOSFET的组合方式进行比较,可看出本文所述MOSFET/二极管组

4、合的优点。与DCM升压电感的恒流相比,CCM下的PFC具备更多优势。通过EMI滤波的电流要比DCM或CRM中小得多,因此这些优势在大功率设计中更为明显。在一般情况下,MOSFET的功率损耗通常由它的开关损耗决定,事实上开关损耗是由分立升压二极管的反向回缩特性所引起的,而上述这个根源取决于工作电流与二极管温度。这些因素导致了二极管与MOSFET功率损耗的增加,进而影响到变流器的性能。图1与图2所示为CCMPFC的工作情况,包括电流和电压波形,可看出低QRR对PFC二极管的重要性。一开始,二极管D1引入输入电流,同时还有二极管中的少量积累电荷。在开关导通的过程中,MOS

5、FETM1导通,二极管D1关断。巨大的导通电流流过MOSFET,除了经整流的输入电流以外还包括D1的反向恢复电流与放电电流。一般情况下,电流的变化率通过M1的封装电感及其他存在于外部回路的寄生电感进行限制。二极管电流波形的负值区域便是反向恢复电荷QRR,其中时间间隔长度(t0到t2)是反向恢复电源招聘专家时间tRR.在t0与t1之间时,二极管保持正向偏置,因此MOSFET电压为VOUT+VF.在t1时间,p-n结附近的积累电荷被耗尽。二极管反向电流持续存在,直至消除所有残留的少量积累电荷。在t2时间,这些电流基本上为零,二极管在反向偏置条件下达到稳态。[1]这些由硅

6、Si二极管反向恢复特性所引起功率损耗,限制了CCMPFC的功效与开关频率。CCMPFC中最值得关注的是减少MOSFET与升压二极管的传导性与开关损耗。如果您想设计一高性能的、且具有较小尺寸与较高的工作频率的CCMPFC,其MOSFET要求如下:较小的导通电阻以减少传导损耗;低CGD以减少开关损耗;低QG以减少栅极驱动功率;低热阻。同样,升压二极管要求如下:tRR时间短以减少MOSFET导通损耗;低QRR以减少二极管开关损耗;小VF以减少传导损耗;温和的反向回缩特性以减少EMI;低热阻。MOSFET比较金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal

7、-Oxide-SemiconductorField-EffectTransistor,MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effecttransistor)。MOSFET依照其"通道"的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOSFET、PMOSFET、nMOSFET、pMOSFET等。今日半导体元件的材料通常以硅(silicon)为首选,但是也有些半导体公司发展出使用其他半导体材料的制程,当中最着名的例如IBM使用硅与锗(germanium)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。