整式和其混合运算

整式和其混合运算

ID:20458008

大小:332.53 KB

页数:10页

时间:2018-10-12

整式和其混合运算_第1页
整式和其混合运算_第2页
整式和其混合运算_第3页
整式和其混合运算_第4页
整式和其混合运算_第5页
资源描述:

《整式和其混合运算》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、整式【课标要求】1.在现实情景中进一步理解用字母表示数的意义.2.能分析简单问题的数量关系,并用代数式表示.3.能解释一些简单代数式的实际背景或几何意义.4.会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.5.能够熟练地通过合并同类项、去括号对代数式进行化简计算.6.了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘、除运算.7.了解同底数指数幂的意义和基本性质.8.会推导乘法公式;,了解公式的几何背景,并能进行简单的计算.【中考动向】近年来,本讲内容除出现在常见的选择、填空题中

2、外,也常出现在化简求值题中,是中考的必考内容,在试卷中主要分布在低中档题目中.整式单项式多项式加减法同底数幂相乘同底数幂相除运算律运算法则合并同类项去括号积的乘方幂的乘方单项式相乘单项式乘以多项式多项式乘以多项式乘法公式单项式除以单项式多项式除以单项式【知识网络图】第1课时整式的概念【知识要点】1.用字母可以表示任何数,也可以直观的表示运算律和公式.2.代数式的概念、书写和意义.3.代数式的表示和求值.4.单项式:由数与字母的积组成的代数式叫做单项式,它的数字因数为该单项式的系数,如:单项式-2a2b3的系数为-2.5.多项式:

3、几个单项式的和叫做多项式,每个单项式叫做它的一个项,它的次数最高的项的次数叫做这个多项式的次数.如:-7+4y2-3y有三项,次数为2.6.整式:单项式和多项式统称为整式.图3-1-1ab【典型例题】例1在矩形纸片上截去四个面积相等的小正方形,小正方形的边长为c,如图所示,求阴影部分的面积和周长.解:⑴面积:⑵周长:例2某礼堂座位的排数与每排的座位数的关系如下表:排数12345…座位数1919+219+419+619+8…⑴写出用排数m表示座位数n的公式;⑵利用⑴题中的公式计算当排数为19排时的座位数.解:⑴用排数m表示座位数n

4、的公式是:⑵当m=19时,n=55(个)答:当排数为19排时,座位数为55个.例3当x=2时,代数式的值等于-19,求当x=-2时代数式的值.解:∵当x=2时,则将x=2代入得∴将x=-2代入得:(∴当x=-2时,代数式的值等于5.例4下列式子中那些是单项式,那些是多项式?,5a,-xy2z,a,x-y,,0,3.14,-m,-m+1.解:单项式:,5a,-xy2z,a,0,3.14,-m.多项式:x-y,-m+1.【知识运用】一、选择题1.下列各式是代数式的个数有().(1)ab=ba(2)2a+3b(3)1+3+(4)A.5

5、B.4C.3D.22.若-32xmy2是6次单项式,则正整数m的值是()A.6B.4C.3D.23.多项式2x3-x2y2+y3+25的次数是()A.二次B.三次C.四次D.五次图3-1-24.(2007.荆门)如图3-1-2,阴影部分的面积是(  )A. B.C.D.二、填空题图3-1-3aa-bbb5.代数式可表示的实际意义是_______________.6.下列各式-x2,(a+b)c,3xy,0,,-5a2+a中,是多项式的有.7.如图3-1-3是由边长为a和b的两个正方形组成,通过用不同的方法,计算下图中阴影部分的面

6、积,可以验证的一个公式是.三、解答题8.若,求代数式的值.9.如图3-1-4,矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK,若LM=RS=c,求花园中可绿化部分的面积.图3-1-4ABQPDSRLMKTC10.bbb已知:如图3-1-5,现有、的正方形纸片和的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为,并标出此矩形的长和宽.图3-1-5第2课时整式的

7、加减【知识要点】1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.2.合并同类项:把同类项合并成一项就叫做合并同类项.3.去括号:若括号前是“+”号,则去掉括号后,括号里边的各项不变号;若括号前是“-”号,则去掉括号后,括号里边的各项均变号.4.整式的加减:实质上是去括号后合并同类项,运算结果是一个多项式或一个单项式.【典型例题】例1先合并同类项,再求值:-3x2y+2x2y2+8x2y-7x2y2+3,其中x=1,y=2.解:原式=(-3+8)x2y+(2-7)x2y2+3=5x2y-5x2y2+3当x=1,y

8、=2时原式=5×12×2-5×12×22+3=10-20+3=-7例2已知2a2xb3y与–3a2b2-x是同类项,求2x+y2的值.解:∵2a2xb3y与–3a2b2-x是同类项①②∴由①得x=1③将③代入②得y=∴2x+y2=2×1+()2=2+=例3计算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。