欢迎来到天天文库
浏览记录
ID:20443247
大小:41.50 KB
页数:7页
时间:2018-10-10
《垂直于弦直径2》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一课时垂直于弦的直径(一)教学目标 :(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;(2)进一步培养学生观察问题、分析问题和解决问题的能力;(3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.教学重点、难点:重点:①垂径定理及应用;②从感性到理性的学习能力. 难点:垂径定理的证明.教学学习活动设计: (一)实验活动,提出问题:1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.2、提出问题:老师引导学生观察
2、、分析、发现和提出问题. 通过“演示实验——观察——感性——理性”引出垂径定理.(二)垂径定理及证明:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=EB,=,=. 证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.组织学生剖析
3、垂径定理的条件和结论: CD为⊙O的直径,CD⊥ABAE=EB,=,=.为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.(三)应用和训练例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=AB=4cm.此时解Rt△AOE即可
4、.解:连结OA,作OE⊥AB于E.则AE=EB.∵AB=8cm,∴AE=4cm.又∵OE=3cm,在Rt△AOE中,(cm).∴⊙O的半径为5cm.说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h关系:r=h+d;r2=d2+(a/2)2例2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)说明:此题为基础题目,对各个层次的学生都要求独立完成.练习1:教材P78中练习1,2两道题.由学生分析思路
5、,学生之间展开评价、交流.指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线——弦心距.(四)小节与反思教师组织学生进行:知识:(1)圆的轴对称性;(2)垂径定理及应用.方法:(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;(2)在因中解决与弦有关问题经常作的辅助线——弦心距;(3)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平
6、分弦所对的劣弧.(五)作业 教材P84中11、12、13.第二课时垂直于弦的直径(二)教学目标 :(1)使学生掌握垂径定理的两个推论及其简单的应用;(2)通过对推论的探讨,逐步培养学生观察、比较、分析、发现问题,概括问题的能力.促进学生创造思维水平的发展和提高(3)渗透一般到特殊,特殊到一般的辩证关系.教学重点、难点:重点:①垂径定理的两个推论;②对推论的探究方法.难点:垂径定理的推论1.学习活动设计:(一)分解定理(对定理的剖析)1、复习提问:定理:垂直于弦的直径平分这条弦,并且平分弦所对应的两条弧.2、剖
7、析:(教师指导)(二)新组合,发现新问题:(A层学生自己组合,小组交流,B层学生老师引导),,……(包括原定理,一共有10种)(三)探究新问题,归纳新结论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行线所夹的弧相等.(四)巩固练习:练习1、“平分弦的直径垂直于弦,并且平分弦所对的两条弧”这句话对吗?为什么?(在推论1(1)中,为什么要附加“不是直径”
8、这一条件.)练习2、按图填空:在⊙O中,(1)若MN⊥AB,MN为直径,则________,________,________;(2)若AC=BC,MN为直径,AB不是直径,则则________,________,________;(3)若MN⊥AB,AC=BC,则________,________,________;(4)若=,MN为直径,则________,________,________.(
此文档下载收益归作者所有