设计一个采样系统

设计一个采样系统

ID:20361281

大小:131.50 KB

页数:8页

时间:2018-10-10

设计一个采样系统_第1页
设计一个采样系统_第2页
设计一个采样系统_第3页
设计一个采样系统_第4页
设计一个采样系统_第5页
资源描述:

《设计一个采样系统》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、成绩课程设计报告题目设计一个采样系统课程名称嵌入式系统课程设计院部名称专业计算机科学与技术班级计算机科学与技术(嵌入式)学生姓名学号课程设计地点课程设计学时指导教师金陵科技学院教务课程设计报告目录一、课程设计目的和要求2二、实验仪器和设备2三、课程设计原理2四、课程设计过程和内容2五、课程设计总结……………………………………………….......7六、参考文献......................................................................................77一、课程

2、设计目的和要求使学生初步了解arm+linux软件设计相关知识、进一步理解嵌入式系统软件的开发、更全面地掌握相关知识。要求学生具备一定的嵌入式系统基础,能熟练掌握相关开发工具,掌握程序调试与测试的基本技能。二、实验仪器和设备计算机、Windows、ADS、LINUX、ARM试验板三、课程设计原理数据采集系统是通过采样电路将输入的模拟信号转换成离散信号,并送入CPU、MCU或DSP进行处理。现在流行的基于PCI总线设计的采集卡是数据采集系统的主流,其优点是可以利用PCI总线的研究成果快速的开发系统软件,整体运行速度快,能够实现实时采集实时处理

3、。但在一些工业测控现场检测大型设备时,从现场到机房有一定的距离,模拟信号传到安装在PC内的PCI数据采集卡会有不同程度的衰减,且易受工业环境的干扰。而单纯用由微控制器(MCU)为核心的数据采集系统时,把数据采集器置于被监测的设备处,虽然可以避免模拟信号的衰减和被干扰,但在这种数据采集系统中,A/D转换器的启动、读取数据并存入到存储器的整个过程由MCU来参与控制,由于受MCU执行指令时间的限制,采集的速率较低,难以适应高速信号采集的需要。本文利用ARM微处理器和CPLD器件组成的现场数据采集系统,然后通过以太网接口于上位机相连,就可以有效解决

4、上述问题。四、课程设计内容及过程(一)系统设计方案整个数据采集系统如图1所示。数据采集系统首先对采集的信号进行前端处理,如信号放大、滤波等预处理。采用的CPLD器件实现整个系统的控制逻辑,它控制着采集通道的切换、A/D转换的起/停、转换后的数据存放在存储单元的地址发生器、产生中断请求以通知ARM读取存放在存储器中的数据,由ARM微处理器进行快速的处理和传输。7图1数据采集系统框图1信号调理模块在信号进行数模转换前,在保证被采集信号不失真的前提下,对输入的信号进行放大、滤波等预处理。高速数据采集系统的输入信号通常为高频信号,需要进行阻抗匹配和

5、前置放大,可以选用高速低噪声信号前置放大器和信号变压器。信号前置放大器的优势是:放大系数可变,信号输入的动态范围大,还可以配置成有源滤波器。但放大器的最高工作频率和工作宽带必须满足系统设计的需要,避免信号失真,同时应该考虑放大器引入的噪声损失,为避免对A/D转换器性能的不利影响,前置放大器的信噪比应远大于A/D转换器的信噪比。当频率远远大于100MHz时,尽可能采用信号变压器,其性能指标(如最高工作频率和工作带宽)优于信号放大器,而且信号失真很小,但信号放大系数固定,输入信号的幅度受到限制。该设计中采用前置放大器,其前端的信号调理电路如图2

6、所示。2A/D转换模块将连续信号转换成离散信号进而转换成数字信号以适用于处理的重要芯片是A/D转换器。一般的逐次逼进型A/D转换芯片的转换速度最多在每秒钟几万次,不能满足高速采样的要求。该设计中选择TI公司的TLC5540高速模数转换芯片,其具有8位分辨率,内置采样和保持电路,该芯片采用一种改进的半闪结构、CMOS工艺制造,因而大大减少了器件中比较器的数量,而且在高速转换的同时,能够保持低功耗,转换速率可达40Mb/s。TLC5540以流水线的工作方式进行工作,在每一个CLK周期均启动一次采样,完成一次采样,每次启动采样是在CLK的下降沿进

7、行,第n次采样的数据经过3个时钟周期的延迟之后,送到内部数据总线上,所以系统刚启动时读取的3个数据是无效数据,在软件设计时,必须抛弃系统启动时读取的前3个数据。73CPLD模块该设计中采用ALTERA公司的EPM7128S,它实现整个系统的控制逻辑。主要有下面几个控制模块电路构成:●时钟控制电路,提供A/D转换器的时钟信号(ACLK),该信号同时提供了给存储器的WR,以控制整个系统的采样频率。●地址产生电路,生成SRAM的地址控制信号,每写完一次SRAM,地址自动加1。●地址总线切换电路,对内部地址发生器和LPC2214产生的两组地址进行切

8、换,提供给存储器。当处于写存储器时,存储器的地址由内部地址发生器发生;当处于LPC2214读存储器时,存储器的地址由LPC2214的地址总线提供。●数据总线切换电路,对A/D的数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。