黄金分割在生活中运用(陈品源)

黄金分割在生活中运用(陈品源)

ID:20277403

大小:1.48 MB

页数:7页

时间:2018-10-10

黄金分割在生活中运用(陈品源)_第1页
黄金分割在生活中运用(陈品源)_第2页
黄金分割在生活中运用(陈品源)_第3页
黄金分割在生活中运用(陈品源)_第4页
黄金分割在生活中运用(陈品源)_第5页
资源描述:

《黄金分割在生活中运用(陈品源)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、黄金分割在生活中的运用学生姓名:陈品源_____指导教师:齐西鹏_____日期:二〇一三年七月_摘要黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。既然黄金分割在数学中有很大意义,那么在现实生活中有否也有许多运用?关键词:黄金分割、现实生活、运用目录1绪论2何为黄金分割2.1黄金分割的历史2.1.

2、1黄金分割的历史2.2黄金分割的证明3黄金分割的实际应用3.1思考有哪些事物运用了黄金分割3.1.1思考为什么黄金比例与总不同3.2寻找生活中的黄金比例(黄金分割)结论1绪论把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1÷0.618≈1.618不仅如此,黄金分割给人们带来的许多美感它在造型艺术中具有美学价值,在工艺美术和日用品的比例设计中,采用这一比值能够引起人们的美感,在实际生活中的应

3、用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧。以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的配方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。2何为黄金分割提到黄金分割,我还想

4、道了黄金分割点,而把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点,这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,

5、即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。2.1黄金分割的历史由于公元前5世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。0.618就是黄金分割。这是一个伟大的发现!公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。他认为所谓黄金分割,指的是

6、把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,...第二位起相邻两数之比,即2/3,3/5,5/8,8/13,13/21,...的近似值。黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们常说的比例方法。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克

7、索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利将中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。其实有关"黄金分割",中国也有记载。虽然没有古希腊的早,但它是中国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于中国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.6

8、18法,是由美国数学家基弗于1953年首先提出的,70年代由华罗庚提倡在中国推广。黄金比例≈1.618:1其性质是与它的倒数正好相差1。2.1.1黄金分割的历史关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。