分形——自然界几何学

分形——自然界几何学

ID:20223550

大小:45.00 KB

页数:4页

时间:2018-10-08

分形——自然界几何学_第1页
分形——自然界几何学_第2页
分形——自然界几何学_第3页
分形——自然界几何学_第4页
资源描述:

《分形——自然界几何学》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、分形——自然界的几何学B.B.Mandelbrot   分形几何扮演了两种角色。它技术决定论混沌的几何学,又是描述山峦、云团和星系的几何学。   自然科学与几何学总是携手并进的。17世纪,开普勒发现能用椭圆描述行星绕太阳运行的轨道。这激励了牛顿用万有引力定律解释这些椭圆轨道。同样,理想的摆做往复运动可以用正弦波形表示。简单的动力学常常和简单的几何外形相联系。这一种数学图像暗示,物体的形状和作用于它的力之间有一种平滑的关系。在行星和摆的例子中还暗示物理学是决定论的,由系统的过去便能预测其未来。   两种新近的科学进展深深影响了

2、几何外形相联系。首先是由于认识到自然界充满了某种称为决定论混沌的事物。宇宙中许多表面看来服从决定论定律的简单物理系统,其行为仍然是不可预测的。例如,受两个力作用的摆。用决定论的观念已无法预测其运动,这使大多数人吃惊。   第二种进展来自对我们周围见到的最不规则而复杂的现象:山峦和云团的外形,星系在宇宙中的分布,离家近点,金融市场价格的起伏等,做数学描述所取得的成果。获取这种数学描述的一条途径在于找到“模型”。换言之,需构想或发现一些数学规则,使之能对实现的某些部分做“数学上的伪造”——做成山峦或云团的照片、最深层空间的天体图

3、、报纸金融版的图表等。   实际上,伽利略曾宣称,“自然界伟大的书是用数学语言写成的”,而且补充说,“其特征为三角形、圆形和其他几何图形,没有这些几何图形人们只能在黑暗的迷宫中做毫无结果的游荡”。然而不论模拟决定论混沌还是模拟不规则系统,这些欧几里得外形已经没什么用。这些现象需要的几何远远不是三角形和圆。它们需要非欧几里得结构——特别是需要称之为分形几何的新几何学。   1975年,我由描述碎石的拉丁文fractus,创造出分形(fractal)一词。分形是几何外形,它与欧几里得外形相反,是没有规则的。首先,它们处处无规则可

4、言。其次,它们在各种尺度上都有同样程度的不规则性。不论从远处观察,还是从近处观察,分形客体看起来一个模样——它是自相似的。整体中的小块,从远处看是不成形的小点,近处看则发现它变得轮廓分明,其外形大致和以前观察的整体形状相似。   自然界提供了许多分形实例。例如,羊齿植物、菜花和硬花甘兰,以及许多其他植物,它们的每一分支和嫩枝都与其整体非常相似。其生成规则保证了小尺度上的特征成长后就变成大尺度上的特征。   用明显的数学模型加工出的分形工艺品为Sierpinski垫圈。取一黑三角形并把它分割成四个较小的三角形,拿掉中心部分的第

5、四个三角形,便留下一个白三角形。每一个新三角形也重复上述做法,便能获得尺度不断缩小具有同样形式的结构,边长总是教上一步边长缩小一倍。当客体的部分和整体完全相似,就可以说客体是线性自相似的。   然而,最重要的一些分形和线性自相似还是有区别的。其中有些是描述普通随机性的分形,另一些是能描述混沌,或非线性系统的分形(在这种系统中对系统行为起作用的因素,其作用程度与其产生的效果不成比例)。让我们为上两种情况举出实例。   我们的分形由于能伪造海岸线、山峦和云团而知名。另一个例子是为《星际旅行II》那样的影片制作的一些场景。   我

6、们的分形模拟著作从少量的人类智慧和大量的博物学知识开始。人类智慧从观察某些事物入手,像立体派画家那样做观察。“云团不是球形,山峦不是锥形,海岸线不是圆的,树皮不是光的,闪电不会沿直线行进”。所有这些自然结构都具有不规则形状,它们是自相似的。换言之,我们发现,把整体中的一部分放大便能进一步揭示其深层结构,而它几乎就是我们一开始处理的那种原始结构的复制品。   博物学知识涉及对自然结构事实的收集与分类。例如,当你测量一个国家的海岸线,测得越精细,海岸线长度便会越长,因为你不得不计入沿海岸线长度越来越小的不规则性。刘易斯.赖伊.理

7、查森已经找到描述这种长度增加的经验定律。  为使分形几何有意义,我们不得不寻找一种方法,从数量的观点来表达形状的复杂性,就象欧几里得几何引用角度、长度、面积、曲率,以及用一维、二维、三维这些概念一样。   对于复杂的几何形体,普通维数的概念可能随尺度不同而改变。例如,直径10厘米的球用1毫米粗的细线做成。从远处看,球是一点。离10厘米远,线球是三维的。在10毫米处,它是一维线团。在1毫米处,每根线变成了圆柱体,整体又一次变成一维,如此等等,维数“交叉”反复从一个值到另一个值。当球用有限数目像原子那么小的微物代表时,它变成零维

8、。   对于分形,和普通维数(0,1,2,3)相对应的维数称为分形维数。通常,它们的维数值不是整数。   最简单的分形(Shape)维变量是相似维Ds只不过给出描述客体所需要的普通维数——分别为0、1、2、3。对一条曲线线性自相似分形又该怎么看呢?这样一条曲线能从很光滑的一维线,到接近充填

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。