数据统计分析

数据统计分析

ID:20188441

大小:396.50 KB

页数:14页

时间:2018-10-10

数据统计分析_第1页
数据统计分析_第2页
数据统计分析_第3页
数据统计分析_第4页
数据统计分析_第5页
资源描述:

《数据统计分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数据的统计分析一、问题背景与实验目的在日常生活中我们会在很多事件中收集到一些数据(比如:考试分数、窗口排队人数、月用电量、灯泡寿命、测量误差、产品质量、月降雨量等数据),这些数据的产生一般都是随机的.这些随机数据乍看起来并没有什么规律,但通过数理统计的研究发现:这些随机数还是符合着某种分布规律的,这种规律被称为统计规律.本实验旨在通过对概率密度函数曲线的直观认识、对数据分布的形态猜测、对某些概率分布的密度函数的参数估计(以正态为例)以及进行简单的正态假设检验,来揭示生活中的随机数据的一些统计规律.二、相关函数(命令)及简介1.概率

2、密度函数pdf系列.以normpdf()为例,调用格式:y=normpdf(x,mu,sigma),计算参数为mu和sigma的样本数据x的正态概率密度函数.参数sigma必须为正.其中:mu为均值,sigma为标准差.2.参数估计fit系列.以normfit()为例,调用格式:[muhat,sigmahat,muci,sigmaci]=normfit(x,alpha),对样本数据x进行参数估计,并计算置信度为100(1-alpha)%的置信区间.如alpha=0.01时,则给出置信度为99%的置信区间.不写明alpha,即表示a

3、lpha取0.05.3.load()函数.调用格式:S=load('数据文件')将纯数据文件(文本文件)中的数据导入Matlab,S是双精度的数组,其行数、列数与数据文件相一致.4.hist(x,m)函数:画样本数据x的直方图,m为直方图的条数,缺省值为10.5.tabulate()函数:绘制频数表.返回table矩阵,第一列包含x的值,第二列包含该值出现次数,最后一列包含每个值的百分比.6.ttest(x,m,alpha)函数:假设检验函数.此函数对样本数据x进行显著性水平为alpha的t假设检验,以检验正态分布样本x(标准差未

4、知)的均值是否为m.h=1表示拒绝零假设,h=0表示不能拒绝零假设.7.normplot(x)或weibplot(x)函数:统计绘图函数,进行正态分布检验.研究表明:如果数据是来自一个正态分布,则该线为一直线形态;如果它是来自其他分布,则为曲线形态.完全类似地可探索以下一系列函数的用法与作用:8.累积分布函数cdf系列,如:normcdf().9.逆累积分布函数inv系列,如:norminv().10.随机数发生函数rnd系列,如:normrnd().9411.均值与方差函数stat系列,如:normstat().三、实验内容1.

5、常见的概率分布的密度函数及其图形1)常见概率分布的密度函数(20个,打√的10个将在后面作介绍)序号中文函数名英文函数名英文简写备注1Beta分布Betabeta2二项分布Binomialbino√3卡方分布Chisquarechi2√抽样4指数分布Exponentialexp√5F分布Ff√抽样6Gamma分布Gammagam7几何分布Geometricgeo√8超几何分布Hypergeometrichyge9对数正态分布Lognormallogn10负二项式分布NegativeBinomialnbin11非中心F分布Nonce

6、ntralFncf12非中心t分布Noncentraltnct13非中心卡方分布NoncentralChi-squarencx214正态分布Normalnorm√15泊松分布Poissonpoiss√16瑞利分布Rayleighrayl17T分布Tt√抽样18均匀分布Uniformunif√19离散均匀分布DiscreteUniformunid√20Weibull分布Weibullweib2)常见概率分布的密度函数文字说明与图形演示:(A)常见连续分布的密度函数(1)正态分布若连续型随机变量的密度函数为:则称为服从正态分布的随机变

7、量,记作.特别地,称时的正态分布为标准正态分布,其概率分布的密度函数参见图1.一个非标准正态分布的密度函数参见图2中的虚线部分().正态分布是概率论与数理统计中最重要的一个分布,高斯(Gauss)在研究误差理论时首先用正态分布来刻画误差的分布,所以正态分布又称高斯分布.一个变量如果是由大量微小的、独立的随机因素的叠加效果,那么这个变量一定是正态变量.比如测量误差、产品质量、月降雨量等都可用正态分布描述.x=-8:0.1:8;y=normpdf(x,0,1);94y1=normpdf(x,1,2);plot(x,y,x,y1,':'

8、);图1标准正态分布图2标准正态与非标准正态(2)均匀分布(连续)若随机变量的密度函数为则称服从区间上的均匀分布(连续),记作,其概率分布的密度函数见参见图3.均匀分布在实际中经常使用,譬如一个半径为的汽车轮胎,因为轮胎上的任一点接触地面的可能性是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。