资源描述:
《基于改进bp神经网络的围岩自稳能力评估模型》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、基于改进BP神经网络的围岩自稳能力评估模型摘要:指挥防护工程是国家防护工程体系的重要组成部分。为提高其建设水平,采用改进的前馈(bp)神经网络,对指挥防护工程围岩自稳能力进行评估。结合指挥防护工程围岩的特点,设计评估网络拓扑结构。针对bp网络原始模型的缺陷改进,引入动量项、自适应调节学习率、陡度因子、可变隐层节点等,并采用遗传算法(ga)寻找最优的初始权值和阈值。最后结合实例对算法进行验证。结果表明,该模型科学可靠,具有较好的工程应用价值。关键词:前馈神经网络;遗传算法;评估;围岩;自稳能力;指挥防护工程self.stabilityevaluationmodelofsurr
2、oundingrockbasedonimprovedbpneuralnetworkwangduo.dian1,2*,qiuguo.qing1,daiting.ting3,wangyue11.engineeringinstituteofcorpsofengineers,plauniversityofscienceandtechnology,nanjingjiangsu210007,china;2.unit66081ofpla,huailaihebei050083,china;3.chinasatellitemaritimetrackingandcont
3、rollingdepartment,jiangyinjiangsu214431,chinaabstract:commandprotectionengineeringistheimportantcomponentofnationalprotectionengineeringsystem.toraisethelevelofconstructionofcommandprotectionengineering,thebackpropagation(bp)neuralnetworkisimprovedtogiveresearchonself-stabilityevaluationofi
4、ts’surroundingrock.firstly,thenetworktopologyisdevised,basedonthepointofsurroundingrock.secondly,themodelisimprovedaccordingtoitsdisadvantages,byintroducingthemomentum,self-adaptiveadjustinglearnrate,variablehiddennodesandsteepfactor,furthermore,geneticalgorithm(ga)isimportedtoseekitsbestin
5、itialweightandthresholdvalue.finally,beusedtoacertaincommandprotectionengineering,themodelisprovedtobecredibleandprecise.commandprotectionengineeringistheimportantcomponentofnationalprotectionengineeringsystem.toraisethelevelofconstructionofcommandprotectionengineering,thebackpropagation(bp
6、)neuralnetworkwasimprovedtogiveresearchonself.stabilityevaluationofitssurroundingrock.firstly,thenetworktopologywasdevised,basedonthecharacteristicsofsurroundingrock.secondly,themodelwasimprovedaccordingtoitsdisadvantages,byintroducingthemomentum,self.adaptiveadjustinglearnrate,variablehidd
7、ennodesandsteepfactor;furthermore,geneticalgorithm(ga)wasimportedtoseekitsbestinitialweightandthresholdvalue.finally,aninstancewasgiventovalidatethealgorithm.theresultsshowthatthemodelisscientificallyreliableandofbettervalueinengineering.keywords:backpr