欢迎来到天天文库
浏览记录
ID:19782362
大小:411.74 KB
页数:8页
时间:2018-10-06
《湖北省八校2018届高三第二次联考数学试题(文)含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密★启用前鄂南高中华师一附中黄冈中学黄石二中荆州中学孝感高中襄阳四中襄阳五中2018届高三第二次联考文科数学试题命题学校:孝感高中命题人:周浩颜运审题人:陈文科审题学校:襄阳四中 审定人:张婷王启冲本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区
2、域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷、草稿纸和答题卡上的非答题区域均无效。4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。5.考试结束后,请将本试卷和答题卡一并上交。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,则=A.B.C.D.2.已知复数满足(其中为虚数单位),则A.B.C.D.3.已知函
3、数的定义域为,则是为奇函数的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要4.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为A.B.C.D.5.如图是由圆柱与圆锥组合而成的几何体的三视图,该几何体的体积为A.B.C.D.6.要得到函数的图象,只需将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位INPUTx,y,zm=xIFy>mm=yENDIFIFz>mm=zENDIF
4、PRINTmEND第9题图7.等差数列的前项和为若,则A.66B.99C.110D.1988.在中,,A.B.C.D.9.如图程序中,输入,则输出的结果为A.B.C.D.无法确定10.抛物线焦点与双曲线一个焦点重合,过点的直线交于点、,点处的切线与、轴分别交于、,若的面积为4,则的长为A.B.C.D.11.函数存在唯一的零点,且,则实数的范围为A.B.C.D.12.对于实数,下列说法:①若,则;②若,则;③若,则;④若且,则.正确的个数为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.实数
5、满足,则的最小值为 .14.等比数列的前项和为,,若,则 .第15题图15.通常,满分为100分的试卷,60分为及格线.若某次满分为100分的测试卷,100人参加测试,将这100人的卷面分数按照分组后绘制的频率分布直方图如图所示.由于及格人数较少,某位老师准备将每位学生的卷面得分采用“开方乘以10取整”的方法进行换算以提高及格率(实数的取整等于不超过的最大整数),如:某位学生卷面49分,则换算成70分作为他的最终考试成绩,则按照这种方式,这次测试的及格率将变为.16.在平面直角坐标系中,为坐标原点,动点到点
6、与到点的距离之比为,已知点,则的最大值为.三、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分17.(12分)已知向量.(1)当时,求的值;(2)已知钝角中,角为钝角,分别为角的对边,且,若函数,求的值.18.(12分)近年来,某地区积极践行“绿水青山就是金山银山”的绿色发展理念,2012年年初至2018年年初,该地区绿化面积(单位:平方公里)的数据如下表:(1)求关于的线性回归方程;(2)
7、利用(1)中的回归方程,预测该地区2022年年初的绿化面积,并计算2017年年初至2022年年初,该地区绿化面积的年平均增长率约为多少.(附:回归直线的斜率与截距的最小二乘法估计公式分别为)19.(12分)如图,在三棱锥中,,为线段的中点,是线段上一动点.(1)当时,求证:面;(2)当的面积最小时,求三棱锥的体积.20.(12分)在直角坐标系中,椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)若斜率存在,纵截距为的直线与椭圆相交于两点,若直线的斜率均存在,求证:直线的斜率依次成等差数列.21.(12分)已
8、知函数(1)当时,求的单调递减区间;(2)对任意的,及任意的,恒有成立,求实数的取值范围.(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22.(10分)在直角坐标系中,直线的参数方程为:为参数,.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,圆的极坐标方程为:.(1)在直角坐标系中,求圆的圆心的直角坐标;(2)设点,若直线与圆交于两
此文档下载收益归作者所有