欢迎来到天天文库
浏览记录
ID:19768130
大小:382.50 KB
页数:12页
时间:2018-10-06
《卫星轨道与位置》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、水星的轨道和位置摘要本文主要在已知水星的远日点和绕日运行的线速度的条件下,通过建立微分方程模型,使用解析法和数值方法求解水星的轨道方程与位置。解析法的求解的过程中,结合了开普勒三大定律,准确的给出了微分方程的精确解,求得水星到太阳的最近距离,水星绕太阳运行的周期约为88天。数值计算求解水星自远日点运行50天后的位置时,本文分别采用了Simpson求积法,基于压缩映射的求根方法以及经典的四阶龙格—库塔法,使用matlab数学软件编程,得到了较为合理的行星运行模型的近似解,三种方法所得结果对应分,,,及,。关键词行星轨道微分方程Simpson法四阶龙格—库塔法matlab一.问题
2、重述水星到太阳的最远距离为m,此时水星绕太阳运行的线速度为m/s。试求问题一水星到太阳的最近距离问题二水星绕太阳运行的周期问题三从远日点开始的第50天(地球天)结束时水星的位置并画出轨道曲线二.问题分析求水星到太阳的最近距离以及水星绕太阳运行的周期等,需要先将水星轨道方程求出,因此可以根据Newton第二定律及万有引力定律,PAGE1建立微分方程模型,将原问题转化为求解带有初值条件的微分方程问题,进而采用解析法或数值方法求解远日点和周期。一.模型假设1.水星运行的轨道是以太阳为一个焦点的椭圆2.从太阳指向水星的线段在单位时间内扫过的面积相等3.水星运行周期的平方与其运行
3、轨道椭圆长轴的立方之比为常量二.符号系统1.水星在远日点的线速度2.太阳的质量3.水星的质量4.水星在远日点的距离5.周期三.建立模型与求解模型一水星的轨迹方程设太阳中心所在的位置为复平面的原点O,在时刻t,水星位于所表示的点P。这里均为t的函数,分别表示的模和辐角。于是水星的速度为,加速度为(1.1),而太阳对行星的引力依万有引力定律,大小为,方向由行星位置P指向太阳的中心O,故为,其中为太阳的质量,m为水星的质量,为万有引力常数。PAGE1依Newton定律,我们得到(1.2),将(1.1)代入(1.2),然后比较实部与虚部,就有这是两个未知函数的二阶微分方程组。在
4、确定某一行星轨道时,需要加上定解条件。假设当t=0时,行星正处于远日点,而远日点位于正实轴上,距原点O为,行星的速度为。那么就有初值条件:因此问题转化为求解带初值问题的微分方程组又将两边同乘以r,即得,从而(1.3),其中,这样有向线段在时间内扫过的面积等于PAGE1,这个正是Kepler的第二定律,从太阳指向水星的线段在单位时间内扫过的面积相等。将(1.3)代入得,于是我们可以得到水星运行的较为简单形式的数学模型:为了求得行星的轨迹方程,要消去变量t,令,那么可以改写为从而将上式代入,化简后为(1.4),其中,引进,立即可以求出,这里A和是待定的常数。记,上式可以写为
5、这个就是水星的轨道方程,是一条平面二次曲线。由于水星绕太阳运行,故必有。由于r在t=0时取道最大值(远日点),这个就意味着此时函数取道最大值1.于是就有,从而轨迹方程为。对于水星而言,PAGE1,又水星的近日点到太阳的距离。依据已知数据,可知,,,从而计算水星到太阳的最近距离为模型二水星的运行周期设水星的周期为T,那么利用Kepler第二定律,我们有(1.4)上式左端为水星轨迹椭圆所围的面积,记为S,由于椭圆的半长轴,半短轴,从而有将上式代入式(1.4),解得(1.5)将有关数据代入,易得模型三水星的位置由于水星的运行满足Kepler第二定律,则该式可改写为,从而可得如
6、果我们要求时相应的和,则意味着首先要解方程,,其中在求出了时的后,立即可以由得到相应的r。下面用数值方法求解水星的位置PAGE11.Simpson法由被积函数的恒正性可知单调,从而方程的根必存在且唯一。取,记。若,那么位于与之间,在h适当小时,可取。计算可采用不同的数值积分法,本文采用Simpson法,取步长h=0.001,具体求解过程见附录一,最后结果为,2.基于压缩映像的求根方法我们引入水星轨道椭圆的参数方程,由于椭圆的半长轴,半短轴,从而中心到焦点的距离为。因左焦点为原点,故椭圆中心位于(ae,0),于是得到参数方程它们与的关系为此式可改写成当时解方程记,,那么上
7、式即,就是说要去求函数的不动点,求解方程不动点可以采用简单迭代法,对于水星,我们已计算出,由于e很小,因此迭代收敛理论上可以很快,当时间从远日点开始的第50天结束时,意味着,从而PAGE1不妨取,于是故由式,,可以计算出相应的,即由得0.64891,而此时的距离为(m)3.经典四阶Runge-Kutte法由我们将由最初的微分方程组求解水星的位置,方程组见下令,那么我们可以得到一阶微分方程组:PAGE1若记这个微分方程组中方程的右端依次为,则相应的四阶Runge-Kutte迭代格式法为这里对于
此文档下载收益归作者所有