3、0,5n),使得函数在区间两端有着不同的符号。然后即可使用二分法。例1解方程其中a为常数,n>2为一整数。显然,方程的解为程序:a<-0.5n<-20cat("trueroots",-a/(n-1)-sqrt(n-2-a^2+(a/(n-1))^2),+-a/(n-1)+sqrt(n-2-a^2+(a/(n-1))^2),"")bisec<-function(b0,b1){f<-function(y,a,n){a^2+y^2+2*a*y/(n-1)-(n-2)}it<-0eps<-.Machine$double.eps^0.25r<-seq(b0,b1,length=3)y<-c(
4、f(r[1],a,n),f(r[2],a,n),f(r[3],a,n))if(y[1]*y[3]>0)stop("fdoesnothaveoppositesignatendpoints")while(it<1000&&abs(y[2])>eps){it<-it+1if(y[1]*y[2]<0){r[3]<-r[2]y[3]<-y[2]}else{r[1]<-r[2]y[1]<-y[2]}r[2]<-(r[1]+r[3])/2y[2]<-f(r[2],a=a,n=n)print(c(r[1],y[1],y[3]-y[2]))}}bisec(0,5*n)运行结果:trueroots-4.2
5、394734.1868411.1.2Brent’smethod二分法是一种特殊的括入根算法。Brent通过逆二次插值方法将括入根方法和二分法结合起来。其使用y的二次函数来拟合x。如果三个点为(a,f(a)),(b,f(b)),(c,f(c)),其中b为当前最好的估计,则通过Lagrange多项式插值方法(y=0)对方程的根进行估计,在R中,函数uniroot就是应用Brent方法求解一元方程的数值根。例2应用uniroot求例1中的方程的根。程序:a<-0.5n<-20out<-uniroot(function(y){a^2+y^2+2*a*y/(n-1)-(n-2)},lower=0
6、,upper=n*5)unlist(out)rootf.rootiterestim.prec4.186870e+002.381408e-041.400000e+016.103516e-05uniroot(function(y){a^2+y^2+2*a*y/(n-1)-(n-2)},interval=c(-n*5,0))$root[1]-4.2395011.1.3Newton’smethod例3使用Newton方法求例1方程的根。程序:nt<-function(b0){a<-0.5n<-20f<-function(y,a,n){a^2+y^2+2*a*y/(n-1)-(n-2)}fd<-
7、function(y,a,n){2*y+2*a/(n-1)}b1<-b0b0<-b0-1eps<-.Machine$double.eps^0.25it<-0while(it<1000&&abs(b1-b0)>eps){it<-it+1b0<-b1b1<-b0-f(b0,a,n)/fd(b0,a,n)cat(it,c(b0,b1,abs(b1-b0)),"")}}输入:nt(5)输出结果:154.2526180.747382224.25261