欢迎来到天天文库
浏览记录
ID:19529378
大小:535.00 KB
页数:39页
时间:2018-10-03
《2018北京市中考数学试题(卷)(含答案解析详解)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2017年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是( )A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度2.(3分)若代数式有意义,则实数x的取值范围是( )A.x=0B.x=4C.x≠0D.x≠43.(3分)如图是某个几何题的展开图,该几何体是( )A.三棱柱B.圆锥C.四棱柱D.圆柱4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>﹣4B.bd>0C.
2、a
3、>
4、b
5、D.b+c>05.(3分)下列图
6、形中,是轴对称图形但不是中心对称图形的是( )A.B.C.D.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是( )A.6B.12C.16D.187.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是( )A.﹣3B.﹣1C.1D.38.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是( )A.与2015年相比,2016
7、年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是( )A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于
8、小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③ 二、填空题(本题共1
9、8分,每题3分)11.(3分)写出一个比3大且比4小的无理数: .12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM= .14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,AD=CD.若∠CAB=40°,则∠CAD= .15.(3分)如图,在平面直角坐标系xOy中,△AOB可以
10、看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由△OCD得到△AOB的过程: .16.(3分)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是 . 三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)
11、解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1﹣)0﹣+
12、﹣2
13、.18.(5分)解不等式组:.19.(5分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗
14、刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣( + ).易知,S△ADC=S△ABC, = , = .可得S矩形NFGD=S矩形EBMF.21.(5
此文档下载收益归作者所有