电力通信网设备故障评估方法的研究new

电力通信网设备故障评估方法的研究new

ID:19400370

大小:32.50 KB

页数:7页

时间:2018-10-01

电力通信网设备故障评估方法的研究new_第1页
电力通信网设备故障评估方法的研究new_第2页
电力通信网设备故障评估方法的研究new_第3页
电力通信网设备故障评估方法的研究new_第4页
电力通信网设备故障评估方法的研究new_第5页
资源描述:

《电力通信网设备故障评估方法的研究new》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、电力通信网设备故障评估方法的研究摘要:对电力通信网可靠性的研究来源于对电力通信网设备故障的研究,因此,对电力通信网设备故障评估方法的研究是非常有意义的。本文采用k-均值聚类方法对电力通信网故障情况进行分类,采用径向基神经网络方法对故障分类情况建立神经网络模型,其中,采用粗糙集方法降低训练神经网络时的网络输入维数,利用反映故障情况的故障综合指数确定故障等级。最后,用该方法解决一个实例问题来展现其优势。关键词:电力通信网故障评估k-均值聚类粗糙集径向基神经网络1概述电力通信网是现代电网不可分割的组成部分,是电网安全、稳定、经济、优质运行

2、的三大支柱之一[1],提高电力通信网的通信质量、增加电力通信网的可靠性是国家电网公司对电力通信网提出的一贯要求,这是贯穿整个电力通信网生命周期的持续过程[2]。可靠性问题起源于故障,通信网可靠性测度的演变与故障的研究是分不开的。在通信网中,故障测度的范畴可以分为设备故障与网络故障两个层面,网络故障是设备故障的深层次反映。随着电力通信网的不断发展,设备的不断更新,有必要对现代电力通信网的设备故障情况进行进一步研究。聚类分析试图将一组未标记样本按照一定的相似度准则分到几个类中去,使得在同一个类中的样本有着较大的相似度,不同类间的样本的相

3、似度较小[3]。k-均值聚类算法是macqueen在1967年首次提出的一种经典聚类算法,具有能对大型数据集进行高效分类的优点。粗糙集理论(roughset)是波兰数学家z.pawlak教授于1982年提出的一种数据分析理论[4]。粗糙集方法能有效处理不确定、不精确、需要主观判断的问题,并能保证在不降低评价效果和质量的前提下对指标体系进行约简,去除冗余和相关的指标[5]。径向基神经网络(radialbasedfunctionneuralnetwork,rbfnn)是20世纪90年代提出的一种具有全局收敛特性的线性学习算法的前馈网络,

4、因其学习速度快的优点,广泛应用于数据的分类和时间序列的预测等方面。本文基于以上方法,对电力通信网设备故障评估进行研究。2方法原理首先建立一套电力通信网设备故障评估指标体系,使用k-均值聚类方法对设备故障情况进行分类,然后用数据样本对径向基神经网络进行训练,训练网络前利用粗糙集方法降低输入维数,提高网络训练速度,然后从训练后的神经网络中提取指标重要度作为指标权重,从而求得综合指数来判断聚类的故障等级,使径向基神经网络具备故障评估能力。原理框图如图1所示。2.1指标体系目前,电力通信网设备主要包括光纤通信设备、光缆线路、交换机设备、调度

5、总机设备、无线设备、电力线载波设备、微波通信设备以及图传终端设备等,据此可以得到电力系统通信设备故障的7个一级指标,然后根据故障的三因素描述方法,可将每种设备故障情况用故障强度、持续时间和故障程度三个指标来描述,即每个一级指标具有3个二级指标。其中,故障强度是指故障对每一使用单位的作用力的大小,如故障概率和故障阈值的差值,持续时间是故障所持续存在的时间长度,故障程度是指故障所扩散的度量,如故障范围。从而可以得到具有21个二级指标的一个电力系统通信设备故障评估指标体系,如表1所示。2.2k-均值聚类本文利用k-均值聚类方法将某省各局电

6、力通信网设备故障情况分为三个等级类。首先,从观测数据集中任意选择3个观测值作为初始聚类中心,其余观测值则根据与这3个聚类中心的距离和最近距离原则,逐个分别聚类到这3个聚类中心所代表的聚类中。然后在完成第一轮聚类之后,各聚类中心发生了变化,继而更新3个聚类的聚类中心,也就是分别根据各聚类中的观测值计算相应聚类的均值。根据所获得的3个新聚类中心,以及各对象与这3个聚类中心的距离,根据最近距离原则对所有观测值进行重新归类。重复上述过程就可获得最终的聚类结果。2.3粗糙集本文利用粗糙集方法对指标集进行有效约简。首先,将指标集作为条件属性,聚

7、类结果作为决策属性,构造决策信息表。然后利用粗糙集方法对决策信息表中的数据进行分析,然后根据得到的指标质量值,删减掉指标质量较小的指标,保留质量较大的指标,最终得到一个有效约简后的电力通信网设备故障评估指标集。2.4径向基神经网络径向基神经网络第一层为输入层,由信号源节点组成,第二层为隐含层,用径向基函数作为隐单元的“基”构成隐含层空间,其单元数视作所面对问题的需要而定,第三层为输出层,它对输入模式的作用做出响应。将使用粗糙集方法约简后的指标集所对应的数据样本作为径向基神经网络的输入,k-均值聚类结果作为网络输出,以此来训练神经网络

8、,使其具备故障分类能力,然后从训练好的神经网络中提取指标的重要性,以此作为指标权重,根据数据样本和指标权重,计算各局电力通信网设备故障情况综合指数,从而便可以判断出各聚类所对应的故障等级。3实例3.1信息表通过调研得到某省各局电力系统

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。