欢迎来到天天文库
浏览记录
ID:19365543
大小:1.86 MB
页数:13页
时间:2018-10-01
《2013北京中考数学一模难题整理.word》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、(潮阳毕业)20.(本小题5分)如图,AB为⊙O的直径,BC是弦,OE⊥BC,垂足为F,且与⊙O相交于点E,连接CE、AE,延长OE到点D,使∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)若cosD=,BC=8,求AB的长.21.(本小题6分)如图,抛物线与轴分别交于点、,直线过点B,与轴交于点,并与抛物线相交于点.(1)求抛物线的解析式;(2)直接写出点C的坐标;(3)若点在线段上以每秒1个单位长度的速度从点向点运动(不与点A、B重合),同时,点在射线上以每秒2个单位长度的速度从点向点运动.设
2、点M的运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?22.(本小题7分)在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△13EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,求AB的长.(房山)8.如图,正方形ABC
3、D的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是第8题图第12题图12.如图,在平面直角坐标系中,以原点O为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线和分别交于,,,,…,则点的坐标是.1322.已知,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行操作:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);如图②,
4、沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)通过操作,最后拼成的四边形为(2)拼成的这个四边形的周长的最小值为_______________________________cm,最大值为_
5、__________________________cm.23.已知,抛物线,当1<x<5时,y值为正;当x<1或x>5时,y值为负.(1)求抛物线的解析式.(2)若直线(k≠0)与抛物线交于点A(,m)和B(4,n),求直线的解析式.(3)设平行于y轴的直线x=t和x=t+2分别交线段AB于E、F,交二次函数于H、G.①求t的取值范围②是否存在适当的t值,使得EFGH是平行四边形?若存在,求出t值;若不存在,请说明理由.24(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、
6、BE相交于点P,求证:BE=AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.第24题图2第24题图11325.已知:半径为1的⊙O1与轴交、两点,圆心O1的坐标为(2,0),二次函数的图象经过、两点,
7、与轴交于点(1)求这个二次函数的解析式;(2)经过坐标原点O的直线与⊙O1相切,求直线的解析式;(3)若为二次函数的图象上一点,且横坐标为2,点是轴上的任意一点,分别联结、.试判断与的大小关系,并说明理由.22.操作与探究:M5M4M3M2M1OM0-55-55yx如图,在平面直角坐标系xOy中,已知点的坐标为(1,0).将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段;又将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段,如此下去,得到线段,,…,.(1)写出点M5的坐标;
8、(2)求的周长;(3)我们规定:把点(0,1,2,3…)的横坐标,纵坐标都取绝对值后得到的新坐标称之为点的“绝对坐标”.根据图中点的分布规律,请写出点的“绝对坐标”.23.二次函数的图象如图所示,其顶点坐标为M(1,-4).(1)求二次函数的解析式;(2)将二次函数的图象在轴下方的部分沿13轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线与这个新图象有两个公共点时,求的取值范围.24.在中,∠ACB
此文档下载收益归作者所有