参考基于matlab的bp神经网络应用_1

参考基于matlab的bp神经网络应用_1

ID:19365300

大小:1.07 MB

页数:49页

时间:2018-10-01

参考基于matlab的bp神经网络应用_1_第1页
参考基于matlab的bp神经网络应用_1_第2页
参考基于matlab的bp神经网络应用_1_第3页
参考基于matlab的bp神经网络应用_1_第4页
参考基于matlab的bp神经网络应用_1_第5页
资源描述:

《参考基于matlab的bp神经网络应用_1》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于MATLAB的BP神经网络应用目录1绪论11.1人工神经网络的研究背景和意义11.2神经网络的发展与研究现状21.3神经网络的研究内容和目前存在的问题31.4神经网络的应用42神经网络结构及BP神经网络42.1神经元与网络结构42.2BP神经网络及其原理72.3BP神经网络的主要功能92.4BP网络的优点以及局限性93BP神经网络在实例中的应用103.1基于MATLAB的BP神经网络工具箱函数103.2BP网络在函数逼近中的应用123.3BP网络在样本含量估计中的应用174结束语23参考文献:24英文摘要25致谢26基于MATLAB的BP神经网络应用基于MATLAB的BP神经网络应用蒋

2、亮亮南京信息工程大学滨江学院自动化专业,南京210044摘要:本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,引出目前存在的问题。然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,并给出神经网络算法的基本流程。采用Matlab软件编程实现BP神经网络算法。将神经网络算法应用于函数逼近和样本含量估计问题中,并分析相关参数对算法运行结果的影响。最后对BP神经网络算法进行了展望。关键词:神经网络;BP神经网络;函数逼近1绪论人工神经网络(ArtificialNeuralNetworks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互

3、相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统[1]。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用[2]。神经网络与其他

4、传统方法相组合,将推动人工智能和信息处理技术不断发展。近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。为了解决神经网络问题中的研究工作量和编程计算工作量问题,目前工程领域中较为流行的软件MATLAB,提供了现成的神经网络工具箱(NeuralNetworkToolbox,简称NNbox)[3],为解决这个矛盾提供了便利条件。神经网络工具箱提供了很多经典的学习算法,使用它能够快速实现对实际问题的建模求

5、解。在解决实际问题中,应用MATLAB语言构造典型神经网络的激活传递函数,编写各种网络设计与训练的子程序,网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序,使自己能够从烦琐的编程中解脱出来,减轻工程人员的负担,从而提高工作效率。1.1人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应[5]。人工神经网络就是模拟人思维的一种方式,是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其

6、丰富多彩的。近年来通过对人工神经网络的研究,可以看出神经网络的研究目的和意义有以下三点:(1)通过基于MATLAB的BP神经网络应用揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。(2)争取构造出尽可能与人脑具有相似功能的计算机,即神经网络计算机。(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域

7、得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。