欢迎来到天天文库
浏览记录
ID:19294139
大小:126.50 KB
页数:4页
时间:2018-09-22
《新人教a版高中数学(选修4-1)《平行线等分线段定理》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高二数学选修4-1学案1平行线等分线段定理【教学目标】1.识记并掌握平行线等分线段定理及其推论,认识它的变式图形;2.能运用平行线等分线段定理任意等分已知线段,能运用推论进行简单的证明或计算;3.培养学生化归的思想、运动联系的观点。【教学重点】平行线等分线段定理及推论的应用【教学难点】平行线等分线段定理的证明【教学过程】一、实际问题,导入新课1.问题:不用其它工具,你能用一张矩形纸片折叠出一个等边三角形吗?ABCDNM2.折法:(学生动手)·先将矩形(ABCD)纸对折,得折痕MN(如图1);·再把B点叠在折痕MN上
2、,得到Rt△BEP(如图2);·最后沿EP折叠,便可得到等边△BEF(如图2)。BCDNPEGF(如图1)3.导入:为什么这样折出的三角形是等边三角形呢?通过今天这节课的学习,我们将从理论上解决这一问题。(如图2)二、复习引导,发现定理1.复习提问(1)你能用尺规作图将一条线段2等分吗?4等分呢?你还会将一条线段几等分?(2)你能用尺规作图将一条线段3等分吗?能否将一条线段任意等分呢?2.引导猜想引导:在上面的问题中,已知条件是什么?得到的结论是什么?你能用文字语言表述吗?猜想:如果一组平行线在一条直线上截得的线段
3、相等,那么这组平行线在其他直线上截得的线段也相等。三、归纳探究,证明定理(图1)1.归纳:如果以3条平行线为例证明上面的猜想,你能根据图1写出“已知”和“求证”吗?已知:直线a//b//c,AB=BC(如图1)求证:A'B'=B'C'。2.探究:(1)不添加辅助线能直接证明吗?(2)四边形ACC'A'是什么四边形?(3)在梯形中常作什么样的辅助线?(图2)DE3.证明:根据学生提供的证明方法,完成证明。证法一:(略)参见课本P3的证法。证法二:过A'、B'点作AC的平行线,分别交直线b、c于D、E(如图2)。(以下
4、证明略)[注意1]结论与直线A'C'的位置无关;[注意2]对于3条以上的平行线组,可用同样的方法证明(说明证法二更具一般性)。平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等。4.定理:推理形式:∵a//b//c,AB=BC,∴A'B'=B'C'。四、图形变式,引出推论1.隐线变式,得推论1在图1中,隐藏直线a、b、c,得梯形ACC'A'(如图3)。这时定理的条件、结论各是什么?条件:在梯形ACC'A'中,AB=BC,AA'//BB'//CC'。结论:A'B'
5、=B'C'。推论1:经过梯形一腰的中点,与底边平行的直线必平分另一腰。(图3)(图4)(图5)(图6)2.运动变式,得推论2既然定理的结论与被截直线的位置无关,将直线A'C'平行向左移动,得到变式图形4。这时定理在△ACC'中的条件、结论各是什么?条件:在△ACC'中,BB'//CC',AB=BC。结论:A'B'=B'C'。推论2:经过三角形一边的中点,与另一边平行的直线必平分第三边。3.变换图形,深化理解如果将直线A'C'继续向左平行移动(如图5、6),这时定理的条件、结论有什么变化?五、运用新知,解决问题1.应
6、用定理,等分线段(1)已知线段AB,你能它三等分吗?依据是什么?(图7)已知:线段AB(如图7)。求作:线段AB的三等分点。作法:①作射线AC②在射线AC上顺次截取AD=DE=EF③连结BF(图8)④过点D、E分别作BF的平行线分别交AB于点G、H,点G、H为所求的三等分点〖注〗作图题虽不要求写作法,但最后的结论一定要写出。(2)你还能将已知线段几等分呢?能任意等分吗?2.应用推论,分解图形例1.已知:如图9,在□ABCD中,M、N分别是AB、CD的中点,CM、AM分别交BD于E、F。求证:BE=EF=FD。分析:
7、(1)根据条件,你能得到哪些平行线?(图9)(2)在图9中,有哪些与推论有关的基本图形?证明:(略。过程由学生自己完成)例2.已知:如图10,□ABCD的对角线AC、BD交于点O,过点A、B、C、D、O分别作直线a的垂线,垂足分别为A'、B'、C'、D'、O'。求证:A'D'=B'C'。分析:(1)你能在图10中找到几个与推论有关的基本图形?(图10)(2)在直线a上,有哪些线段是相等的?根据是什么?证明:(略。过程由学生自己完成)思考:若去掉条件“AC、BD交于点O”,结论是否成立?3.你能运用今天所学知识,解决
8、本课开始提出的“折等边三角形”问题吗?六、课堂小结,提炼升华1.理解一个定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等。2.掌握两个推论推论1:经过梯形一腰的中点,与底边平行的直线必平分另一腰。推论2:经过三角形一边的中点,与另一边平行的直线必平分第三边。3.了解三种思想化归思想——定理证明是通过
此文档下载收益归作者所有