哲学逻辑学毕业论文 极限思想的辩证思考

哲学逻辑学毕业论文 极限思想的辩证思考

ID:1907392

大小:30.00 KB

页数:6页

时间:2017-11-13

哲学逻辑学毕业论文 极限思想的辩证思考_第1页
哲学逻辑学毕业论文 极限思想的辩证思考_第2页
哲学逻辑学毕业论文 极限思想的辩证思考_第3页
哲学逻辑学毕业论文 极限思想的辩证思考_第4页
哲学逻辑学毕业论文 极限思想的辩证思考_第5页
哲学逻辑学毕业论文 极限思想的辩证思考_第6页
资源描述:

《哲学逻辑学毕业论文 极限思想的辩证思考》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、湖南师范大学本科毕业论文考籍号:XXXXXXXXX姓名:XXX专业:哲学逻辑学论文题目:极限思想的辩证思考指导老师:XXX二〇一一年十二月十日  摘 要:极限理论贯穿整个微积分学,是微积分的重要内容和难点。认识极限思想是把握和理解极限理论的前提。通过极限思想与辨证哲学的紧密联系,加强极限思想的辨证理解,有助于数学思维的培养和数学素养的提高。  关键词:极限思想;辨证哲学;对立统一  0引言。  微积分是研究客观世界运动现象的一门学科,我们引入极限概念对客观世界运动过程加以描述,用极限方法建立其数量关系并研究其运动结果[1]。极限理论是微积分学

2、的基础理论,贯穿整个微积分学。要学好微积分,必须认识和理解极限理论,而把握极限理论的前提,首先要认识极限思想。极限思想蕴涵着丰富的辩证思想,是变与不变、过程与结果、有限与无限、近似与精确、量变与质变以及否定与肯定的对立统一。  1极限思想与辩证哲学的联系。  1.1极限思想是变与不变的对立统一。  “变”与“不变”反映了客观事物运动变化与相对静止两种不同状态,不变是相对的,变是绝对的,但它们在一定条件下又可相互转化。例如,平面内一条曲线C上某一点P的切线斜率为kp。除P点外曲线上点的斜率k是变量,kp是不变量,曲线上不同的点对应不同的斜率K,

3、斜率k不可能等于kp,k与kp是变与不变的对立关系;同时,它们之间也体现了一种相互联系相互依赖的关系。当曲线上的点无限接近P点过程中,斜率k无限接近kp,变化的量向不变的量逐渐接近。当无限接近的结果产生质的飞跃时,变量转化为不变量,即“变”而“不变”,这体现了变与不变的统一关系。  1.2极限思想是过程与结果的对立统一。  过程和结果在哲学上是辩证统一的关系,在极限思想中也充分体现了结果与过程的对立统一。在上例中,当曲线上的点无限接近点P的变化过程中,k是变化过程,kp是变化结果。一方面,无论曲线上点多么接近点P,都不能与点P重合,同样曲线上

4、变化点的斜率k也不等于kp,这体现了过程与结果的对立性;另一方面,随着无限接近过程的进行,斜率k越来越接近kp,二者之间有紧密的联系,无限接近的变化结果使得斜率k转化为kp,这体现了过程与结果的统一性。所以,通过研究曲线上点斜率k的变化过程得到P点的斜率kp就是过程与结果的对立统一。  1.3极限思想是有限与无限的对立统一。  在辨证法中,有限与极限是对立统一的。无限与有限有本质的不同,但二者又有联系,无限是有限的发展,同时借助极限法,从有限认识无限[2]。例如,在极限式limn→∞xn=a中xn对应数列中的每一项,这些不同的数值xn既有相对

5、静止性,又有绝对的运动性。数列中的每一项xn和a都是确定不变的量,是有限数;随着n无限增大,有限数xn向a无限接进,正是这些有限数xn的无限变化,体现了无限运动的变化过程,这种无限运动变化结果是数值。因此在极限思想中无限是有限的发展,有限是无限的结果,他们既是对立又是统一的。  1.4极限思想是近似与精确的对立统一。  近似与精确是对立统一的关系,在一定条件下可相互转化,这种转化是理解数学运算的重要方法[2]。  在极限抽象的概念中,引入实例如“圆内接正多边形面积”,其内结多边形面积是该圆面积的近似值,当多边形的边数无限增大时,内结多变形面积

6、无限接近圆面积,取极限后就可得到圆面积的精确值,这就是借助极限法,从近似认识精确。又如在极限式limn→∞xn=a中,当n无限增大时,数列的项x1,x2,…,xn反映变量xn无限的变化过程,而a反映了变量xn无限变化的结果,每个xn都是a的近似值,并且当n越大,精确度越高;当n趋于无穷时,近似值xn转化为精确值a。虽然近似与精确是两个性质不同、完全对立的概念,但是通过极限法,建立两者之间的联系,在一定条件下可以相互转化。因此近似与精确既是对立又是统一的。  1.5极限思想是量变与质变的对立统一。  在唯物辨证法中,任何事物都具有质和量两个方面

7、,都是质和量的统一体。质是指事物成为它自身并区别于其他事物的内在规定性,量是指事物存在的规模、发展程度和速度,以及它的构成成分在空间上的排列组合等可以用数量来表示的规定性[3]。量变和质变既有区别又有联系,两者之间有着辩证关系。量变是质变的准备,量的变化达到一定的度,就不可避免地引起质变,只有质的变化才是事物根本性质的变化,量变质变规律在数学研究工作中起重要作用[4]。对任何一个单位圆的内接正多边形,事物的质是圆的内接多边形,量是内接多边形的边数,当边数无限增加,得到的仍是圆内接正多边形,是量变,不是质变,量变体现事物发展的连续性,在事物量变

8、过程中,保持事物本身质的稳定性。但当边数增加的无限过程中,由于量的动态变化,多边形越来越接近圆,为质变创造条件,多边形面积就变转化为圆面积,促进量质转化,达到矛盾统

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。