欢迎来到天天文库
浏览记录
ID:19032716
大小:18.92 KB
页数:7页
时间:2018-09-28
《高考数学圆锥曲线复习方法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高考数学圆锥曲线复习方法 导语:关于高考数学圆锥曲线复习方法,在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。下面由小编为您整理出的相关内容,一起来看看吧。 高考数学圆锥曲线复习方法 圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了椭圆;当平面倾斜到"和且仅和"圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双
2、曲线的一边,以圆锥顶点做对称圆锥,则可得到双曲线。 圆锥曲线,在高考中一直作为压轴大题的形式出现,其实圆锥曲线很简单,那么从哪些地方下手才能轻松学好圆锥曲线呢?本期超级学团的学霸老师的主题就是:圆锥曲线。 在高中的学习中,平面解析几何研究的两个主要问题,一个是根据已知条件,求出表示平面曲线的方程;而另一个就是通过方程,研究平面曲线的性质. 那么接下来,我们就就着这两个问题来说啦~ 1、曲线与方程 首先第一个问题,我们想到的就是曲线与方程的这部分内容了。 在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与
3、方程这部分内容。在这部分呢,我们要注意到的是几种常见求轨迹方程的方法。在这里呢,简单的说一下,一共有四种方法:1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 2、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 3、相关点法 若动点P(x,y)随已
4、知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法). 4、待定系数法 求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 (二)椭圆,双曲线,抛物线 这部分就可以研究第二个问题了呢。在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。(不会的通宵快去恶补~~~) 在一般做题的时候,我们要
5、首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断△,韦达定理,列关系式,整理,作答。在考试中,我们按照步骤一步一步的写,写到韦达定理至少8分有了。当然了,各圆锥曲线的几何性质也尤其重要,包括离心率,顶点,对称性,范围,以及焦点弦,准线,渐近线等等。这些性质大家也要熟练掌握并且会应用。在这部分呢,还有很多很多的专题,譬如弦长问题,那大家还记得弦长公式吗?中点弦问题,我们通常会用到点差法,那么何为点差法呢?就
6、是把两点坐标代入曲线方程作差后得到直线的斜率和弦中点坐标之间的关系式,这种方法。还有一类问题就是直线与圆锥曲线的位置关系。分为三大类:有直线与椭圆的位置关系,就是看△;直线与双曲线的位置关系,先看联立之后的方程中的a,如果a=0方程有一解,直线与双曲线有一个公共点,a≠0的时候,还是看△啦;而直线与抛物线与直线与双曲线的位置关系是类似的,当a=0直线与抛物线有一个公共点,a≠0的时候,还是看△。 说了这么多,你记住多少呢?其实圆锥曲线这块知识点很有规律的,很多的知识点都是类似的。当然,因为圆锥曲线这块的题都不太好算,
7、所以大家在做题的过程中不要着急,要保持平和的心态。因为只有这样,才能保证少丢分~~ 高考数学复习方法指导 一、夯实基础的重点方法 特别是基础差的同学,一定要老老实实的从课本开始,不要求快,要复习一个章节,掌握一个章节。具体的方法是,先看公式,理解、记住,然后看课后习题,用题来思考怎么解,不要计算,只要思考就好,然后再翻课本看公式定理是怎么推导的,尤其是过程和应用案例。特别注意这些知识点为什么产生的。如集合、映射的数学意义是为了阐述两组数据(元素)之间的关系。而函数就是立足于集合。并由此产生的充要条件等知识点。通过
8、这么去理解,你会发现,数学基础很快就能掌握。但记住,一定要循序渐进,不能着急。 对于容易犯的错误,要做好错题笔记,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的,因为盲目大量做题,有时候错误或者误解也会得到巩固,纠正起来更加困难。对于课本中的典型问题,要深刻理解,并学会解题后反思:反思题意,防止
此文档下载收益归作者所有