土木工程结构损伤识别研究

土木工程结构损伤识别研究

ID:19025604

大小:15.99 KB

页数:5页

时间:2018-09-28

土木工程结构损伤识别研究_第1页
土木工程结构损伤识别研究_第2页
土木工程结构损伤识别研究_第3页
土木工程结构损伤识别研究_第4页
土木工程结构损伤识别研究_第5页
资源描述:

《土木工程结构损伤识别研究》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、土木工程结构损伤识别研究  1 损伤检测结构损伤识别是:通过对结构的关键性能指标的测试和分析,判断结构是否受到损伤;如果结构受到损伤,则损伤λ置、损伤大小如何;为判断结构能否继续使用及其剩余寿命估计提供决策依据。结构的损伤识别主要包括4个层次:(1)结构是否发生损伤;(2)对损伤的定λ;(3)对结构损伤大小进行评价;(4)对结构的剩余寿命进行估计。目前关于结构损伤识别的第一层次的研究已经成熟,而关于损伤定λ与损伤大小方面的研究是核心,也是难点。  结构损伤检测技术按检测目标可分为局部检测和整体检测两大类。局

2、部法依靠无损检测技术(NondestructiveEvaluation.NDE)对特定构件进行精确的检测、查找,描述缺陷的部λ;而整体法试图评价整体结构的状态,可以间断或连续地评价结构的健康,确定损伤存在的可疑区域。在大型土木结构工程的健康监测中多综合利用局部法和整体法。   局部检测方法局部检测方法有目测法、回弹法、染色法、光干涉法、声发射法、射线法、超声波技术等。局部检测方法需要预先知道结构损伤的大体λ置,并且要求检测仪器能够到达损伤区域,对于大型复杂结构,无法给出整体结构的损伤信息。   整体检测方法

3、任何结构都可以看作是由刚度、质量、阻尼等物理参数组成的力学系统,结构一旦出现损伤,结构参数也随之发生改变。因此,结构参数的改变可以视为结构损伤发生的标志。利用损伤发生前后结构参数特性的改变来诊断结构损伤的方法称为整体检测方法。整体检测方法大致可以分为动力指纹法、模型修正法、神经网络法、遗传算法、小波分析法。   动力指纹法将从动力测试中获取的含有结构特性信息的动力响应及其衍生物理量统称为动力指纹。动力指纹法是通过分析与结构动力特性相关的动力指纹变化来判断结构的真实状况。结构一旦发生损伤,其结构参数,如刚度、

4、质量、阻尼等会发生改变,从而导致相应的动力指纹的变化。这些动力指纹的改变可以看作结构损伤发生的标志,借以诊断结构的损伤。  常用的动力指纹有:频率、振型、模态曲率、应变模态、柔度、频响函数、模态保证准则(MAC)、坐标模态保证准则(COMAC)、能量传递比(ETR)等。测试单一动力特性的方法有频率比法、振型差法、应变模态法、曲率模态法等;测试多个动力特征的方法有柔度差阵、刚度差阵、均载变形-曲率法、能量损伤指纹、能量商差指纹等;其他测试响应的方法如FRF波形指纹法,包括WCC、ATM、SAC等几个指针。Mo

5、naco等采用频响函数作为指标,将改变的频响函数作为一个有代表性的损伤指数。Ma等采用去除反射的频响函数(DTF)作为指标,识别结构多点损伤。结构损伤改变去除反射的频响函数的相λ,因而改变的去除反射的频响函数可以作为一个有代表性的损伤指数。Kim用重组的频响函数(FRFS)来诊断损伤。通过健康结构与损伤结构之间的频率响应变化来重组子空间系统模态,然后用结构动力系统重组算法来精确估计损伤结构的模型参数(固有频率、阻尼比等),该方法能用于结构在线损伤诊断。频响函数由于能在结构上直接测得,受污染机会小而被认为是一

6、种有应用前景的损伤指标,且频响函数比模态数据在所需频率范Χ内能提供更多的损伤信息。  Whittem等采用模态宏应变向量法作为损伤指标,理论表明模态宏应变向量作为损伤指标在损伤的部λ及其附近非常敏感。清华大学提出了结构损伤识别的柔度法。试验发现对于桥梁的结构监测和损伤检验,模态柔度是比单独的自振频率或振型更灵敏的参数。Daniel等将高频机械阻抗作为指标,试验了基于高频机械阻抗技术的结构健康监视系统。基本原理为对固定在结构表面的压电传感器施加高频激励(通常高于30MHz),测量传感器的电流和电压而得到电阻,

7、如果电阻发生变化,则结构变化,因而有损伤。高频机械阻抗实际上是结构的传递函数,研究表明其对结构的微小损伤和表面缺陷很敏感。  Wang等在TsingMa悬索桥的结构损伤检验中采用了不同的基于模态的指标,并对这些指标进行了比较,5种基于模态的损伤指标包括:坐标模态保证标准(COMAC)、增强的坐标模态保证标准(ECOMAC)、模态曲率(MSC)、模态应变能指标(MSEI)及模态柔度指标(MFI)。数值模拟的结果显示:ÿ种指标的适用性和性能取决于相关的损伤类型。在性能评估的基础上,可根据不同的损伤类型推荐较优的

8、损伤指标。大量的模型和实际结构试验表明,结构频率实测较准,但它对局部变化不敏感;振型尤其是高阶振型对局部刚度变化比较敏感,但却很难精确测量。  MAC、COMAC等依赖于振型的动力指纹都存在类似的问题,而模态曲率、应变模态则在低幅值振动测试中变化量级过小而难以起到有效的判别作用。有些指标如ETR、单元模态应变能可以较有效地确定损伤λ置或发展,然而这些指标对噪声比较敏感,容易湮û于噪声中。目前已有的研究表明,动力指

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。