发电机定子线棒绝缘烧损原因及对策

发电机定子线棒绝缘烧损原因及对策

ID:19021940

大小:17.70 KB

页数:7页

时间:2018-09-28

发电机定子线棒绝缘烧损原因及对策_第1页
发电机定子线棒绝缘烧损原因及对策_第2页
发电机定子线棒绝缘烧损原因及对策_第3页
发电机定子线棒绝缘烧损原因及对策_第4页
发电机定子线棒绝缘烧损原因及对策_第5页
资源描述:

《发电机定子线棒绝缘烧损原因及对策》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、发电机定子线棒绝缘烧损原因及对策  湖南省南津渡水电站机组是20世纪80年代末从奥地利ELIN公司引进的灯泡贯流式机组,装机3台,单机容量为20MW.发电机定子直径,F级绝缘,定子绕组为分数槽双层波绕组;定子线棒主绝缘采用粉氧云母为基础、环氧树脂为胶粘剂、玻璃纤维补强的热固性复合绝缘材料,主绝缘单边厚度,线棒与槽壁、槽底、槽楔板、层间半导体隔板间空隙采用注入半导体硅橡胶填充。定子采用贴壁结构,直接固定在灯泡体外壳上。定子铁芯内部无通风道,利用灯泡体外壁作为定子散热面,直接将热量传导给灯泡体外流过的河水中。发

2、电机冷却方式为密闭式水循环强迫风冷。一次冷却系统为密闭空气冷却系统,由位于灯泡头内4台4kW的轴流风机将风向水空冷却器冷却,冷却后的风经过转子轮毂上的5个轴向通风孔到达定子下游侧,再经转子极靴间间隙和气隙到达定子上游侧,再后回到风机。二次冷却系统为水空冷却器,采用密闭循环,由灯泡头外河水经灯泡头内冷却套冷却水空冷却器产生的热水。  南津渡水电站机组先后发生了3次定子线棒绝缘击穿的定子接地故障。首次发生于1999年6月3日,1号机组在并网并带满负荷时,突然发生定子接地保护动作停机,后经检查发现,定子198槽上

3、层线棒紧靠上游侧槽口处被击穿。在处理过程中,发现事故线棒靠近击穿位置约4/5线棒全长处已呈白色,防晕层完全破坏,主绝缘电腐蚀现象严重,而下游侧段线棒从槽口处起有30~40cm长的线棒直线段防晕层没有受损且未发生电腐蚀。XX年7月,亦是1号机组213槽上层线棒靠近上游侧槽口处发生击穿。XX年6月19日,2号发电机定子222槽下层线棒上游侧槽口击穿。后两次定子接地事故与第一次类似。  南津渡水电站发电机定子线棒端部接头采用对接锡焊焊接。1、2、3号发电机在XX年和XX年先后发生定子端部连接部件接头焊接处烧断开焊

4、3次,事故发生点均处于发电机上游侧。其中XX年6月19日在2号机事故中同时发现一定子线棒接头的绝缘并头套有严重烧损现象,拆除后发现该接头已部分脱焊,焊锡流出焊口,由于及时发现未造成事故。  线棒电腐蚀严重  XX年机组运行中发现有臭氧气味,特别是2号机臭氧气味强烈。对2号机检查发现线棒上游侧槽部及槽口处电腐蚀严重。上游侧1/3线棒段有白色粉状物,1/5槽口处槽壁有黑点、毛刺、啃齿,槽楔松动,硅橡胶老化;下游侧线棒未见异常。上游侧部分线棒与槽壁间普遍存在~1mm间隙,线棒有松动现象。在机组事故抢修中拆下的未击

5、穿线棒也可以明显发现上游侧线棒段电腐严重,填充硅橡胶老化现象,而下游侧完好如初。线棒电腐蚀严重部位为时钟10至2点钟区间,该部位为各相绕组高电位处。其它两台机也有类似现象。  查ELIN公司图纸,定子线棒宽,其中股线宽,主绝缘;定子槽宽为17mm,槽形宽,叠片公差双边:槽衬宽,加线棒宽为,与槽形装配在宽度方向上有的过盈,但与冲片宽有的间隙:线棒与槽壁间充填硅橡胶,双边  通过上述数据发现,假若叠片质量很好,则的双边公差就偏大。线棒下线公差,特别是采用液压成型工艺的,线棒本身公差就较大。合计两部分公差后,在槽

6、壁与线棒之间间隙最大可达以上。由于槽壁与线棒间间隙较大,两者之间电位差较大,易产生局放电现象,长时间作用下,可造成线棒绝缘烧损劣化,表现为槽部电腐蚀。南津渡水电站发现的定子槽部有白色粉状物,运行中产生臭氧等,应是长期局部放电所致。由机组10至2点钟区间线棒处于各相高电位区,线棒与槽壁电位差较其它区域要大,局部放电更为严重,从而导致此处电腐蚀最严重。线棒主绝缘单边仅,属超薄型绝缘,虽技术比较先进,但不足的是:在线棒换位处对地绝缘更薄,生产加工中在个别换位处形成绝缘层过薄是可能的。在换位处,若存在长期电腐蚀,绝

7、缘被击穿的可能性更大。  3台发电机事故点及电腐蚀严重区域都处于定子线棒上游侧段,而线棒下游侧段无异常,说明事故及线棒烧损的区域存在规律性。从事故及线棒烧损区域可以发现其处于冷却风道的后段,而冷却风在此段温度已升高,冷却能力相对下降,此区域为定子高温区域。由于在常温附近电介质的热劣化随温度升高而劣化作用加大、劣化速度加快,因此这个区域绝缘劣化速度比其区域快且强烈,造成事故和烧损集中于此区域发生。同样,若定子端部焊接有缺陷而导致发热时,则上游侧开焊事故机率远大于下游侧。造成风冷系统冷却能力不足的原因有:1)由

8、于设计缺陷造成局部放电较为强烈,对定子发热量和温升估计不足;2)冷却系统设计有缺陷。由概况介绍中可知,定子内未设计通风道,定子铁芯内部散热不够,造成热量积累。因冷却风量不足,导致冷却风在风道后段温度过高;3)冷却风到达风道末段后,有风机的强迫抽取作用,由转子磁极间隙和气隙流出的气流直接被风机抽走,上游侧定子端部与灯泡体间局部范围内气流量很小,加上冷却风温度升高等因素使得上游侧定子端部冷却条件差。  发电机定子线圈

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。