欢迎来到天天文库
浏览记录
ID:18778421
大小:4.89 MB
页数:35页
时间:2018-09-23
《油管内壁爬行机器人的设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、前言随着现代科学技术的发展,管道运输作为一种高效、安全、可靠的手段应用日益广泛,城市中的地下排水系统、取暖系统、煤气系统、自来水系统等都应用了各种管道;另外,在现代工农业、石油、化学、核工业等领域也大量使用了管道。经过长期使用,它们会出现裂纹、腐蚀、堵塞等故障。有的管道中输送的是剧毒或放射性介质,若这些管道产生裂纹、漏孔会造成介质泄漏,引起事故甚至发生灾难。为了防患于未然,必须对这些管道进行定期检测和维修。但是它们有的埋在地下,甚至埋在海底,有的口径很小,人无法进入。挖出管道进行检测、维修既不经济又不现实
2、,由此可见,管道机器人有着广阔的市场。我国早在1987年就开展了管内机器人的研究,并试制了几种模型,但总体水平较国外差。管内机器人研究是机电一体化的高科技研究项目。在石油、化工、核工业、给排水等许多管道工程中,都需要进行管内检测、喷涂及加工等工作,管内机器人在完成这些工作中会发挥重要作用,因此,开发研究管内机器人意义很大[1]。本次题目的内容就是设计一种可在油管内壁爬行,并且搭载工作体的部分可协助工作体完成相应作业的机器人。采用机械结构和电气控制来达到设计目的。要实现的理想过程是:人对主机输入一个控制信号
3、,可以通过单片机对电机、电磁铁进行电气控制,从而使机器人能够按照所搭载工作体的要求进行移动,并在工作体的工作位置做出相应的辅助动作。机器人在行进过程中可在任意位置停止前进,并可以在该位置开始作业,工作体可在步进电机驱动下完成小于360度的任意角度的旋转。351方案的结构选择1.1总体选择总体上,本次设计主要采用机械结构设计来完成指定的动作,而用电气设计来控制这些动作。1.2前进方案的选择目前在管道内机器人的行进方式多种多样,本设计采用蠕动式行进的方式。前进方案由旋转式步进电机、直线式步进电机、气缸中进行选
4、择。现将3种方式在本设计中的应用进行比较。由于本设计前进方式为直线,所以其中使用直线式电机最为简便,直线电机的电机轴是丝杠形式的,于是可以通过丝杠的导程来计算机器人的行进距离。使用旋转式步进电机的原理与直线式步进电机相似,可通过一个小型连轴器与丝杠相连组成一个直线式步进电机,也可以通过一组齿轮减速器将丝杠与电机轴相连,简图见图1-1。图1-1结构简图第三种方法是使用气缸推动机器人前进。综合比较三种方法后发现,气缸实现直线运动过程简单,但其行程不易控制,要实现精确控制需要成本过高。两种步进电机的特点相似,但
5、直线式的步进电机在安装时不易对心,且价格远高于旋转式步进电机。所以综合考虑最终选择采用旋转电机的方案。1.3卡紧方案的选择35机器人在蠕动式爬行的时候,需要卡紧装置进行配合。所以需要选择合理的卡紧方案。由于本次设计的机器人需要适应从4.5到7英寸的不同管径的管道,这给卡紧方案的设计带来很大的难度。方案1为采用推拉式电磁铁直接进行卡紧,并使用适当的连杆机构调整电磁铁位置,当连杆机构将电磁铁调整到指定位置后,电磁铁得电,推杆伸长,机器人卡紧管壁。工作完成后,电磁铁失电,机器人放松[6]。结构简图见图1-2图1
6、-2结构简图方案2为使用一个旋转电磁铁,用旋转电磁铁来带动凸轮实现卡紧,通过对凸轮进行设计可以计算出支撑杆的移动距离。当旋转电磁铁得电后,旋转一定角度,带动凸轮旋转,使支撑杆在径向产生移动从而卡进管壁。电磁铁失电后,通过弹簧的作用使凸轮和支撑足复位,机器人放松。结构简图见图1-3。35图1-3结构简图Diagram1-3structuresketchplans方案3为使用一推拉式电磁铁推动锥形滑块,同时设计三个长度可调的支撑杆,当电磁铁得电后,电磁铁推杆伸出并带动锥形滑块沿轴向前进。由于滑块为锥形,支撑足
7、产生径向移动,机器人被卡紧[7]。电磁铁失电后,机器人放松,原理同方案2。结构简图见图1-4。图1-4结构简图Diagram1-4structuresketchplans综合比较以上三种方案,首先放弃了方案1,由于管道内空间有限,电磁铁的体积太大,无法合理的安放电磁铁,并且电磁铁的重量也相对较大,设计与之相应的连杆机构也很困难。方案2与方案3在原理上基本相同,不同之处在于方案2用的是凸轮,而方案335用的是锥形滑块。凸轮的结构复杂,且其表面需要非常光滑,由于凸轮曲面为复杂曲面,所以普通磨床难以加工,需用数
8、控加工中心进行加工,这样加大了成本。经过综合比较决定选择方案3。另外,在卡紧方面也可使用气缸,此类型的设备已被开发,但由于空间问题并不适合于本设计,故本设计不使用该方法。1.4旋转方案的选择旋转部分采用一个旋转式步进电机,电机轴带动法兰,可在法兰上连接工作体,通过控制步进电机的转动角度来控制工作体的转动。结构如图1-5所示。图1-5Diagram1-51.5调节方案的选择由于本次设计的机器人要适应不同的管径,所以需要设计一个结
此文档下载收益归作者所有