理论力学 课后答案

理论力学 课后答案

ID:18769533

大小:674.00 KB

页数:9页

时间:2018-09-23

理论力学 课后答案_第1页
理论力学 课后答案_第2页
理论力学 课后答案_第3页
理论力学 课后答案_第4页
理论力学 课后答案_第5页
资源描述:

《理论力学 课后答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2-1x解:当摩擦系数足够大时,平台AB相对地面无滑动,此时摩擦力取整体为研究对象,受力如图,系统的动量:将其在轴上投影可得:根据动量定理有:即:当摩擦系数时,平台AB的加速度为零。当摩擦系数时,平台AB将向左滑动,此时系统的动量为:将上式在轴投影有:根据动量定理有:由此解得平台的加速度为:(方向向左)2-2x取弹簧未变形时滑块A的位置为x坐标原点,取整体为研究对象,受力如图所示,其中为作用在滑块A上的弹簧拉力。系统的动量为:将上式在x轴投影:根据动量定理有:系统的运动微分方程为:92-4取提起部分为研究对象,受力如图(a)所示,提起部分的质量为,提起部分的速度为

2、,根据点的复合运动可知质点并入的相对速度为,方向向下,大小为(如图a所示)。y(a)(b)根据变质量质点动力学方程有:将上式在y轴上投影有:由于,所以由上式可求得:。再取地面上的部分为研究对象,由于地面上的物体没有运动,并起与提起部分没有相互作用力,因此地面的支撑力就是未提起部分自身的重力,即:x3-5将船视为变质量质点,取其为研究对象,受力如图。根据变质量质点动力学方程有:船的质量为:,水的阻力为将其代入上式可得:将上式在x轴投影:。应用分离变量法可求得9由初始条件确定积分常数,并代入上式可得:2-8图a所示水平方板可绕铅垂轴z转动,板对转轴的转动惯量为,质量为

3、的质点沿半径为的圆周运动,其相对方板的速度大小为(常量)。圆盘中心到转轴的距离为。质点在方板上的位置由确定。初始时,,方板的角速度为零,求方板的角速度与角的关系。oM图a图b解:取方板和质点为研究对象,作用在研究对象上的外力对转轴z的力矩为零,因此系统对z轴的动量矩守恒。下面分别计算方板和质点对转轴的动量矩。设方板对转轴的动量矩为,其角速度为,于是有设质点M对转轴的动量矩为,取方板为动系,质点M为动点,其牵连速度和相对速度分别为。相对速度沿相对轨迹的切线方向,牵连速度垂直于OM连线。质点M相对惯性参考系的绝对速度。它对转轴的动量矩为其中:系统对z轴的动量矩为。初始

4、时,9,此时系统对z轴的动量矩为当系统运动到图8-12位置时,系统对z轴的动量矩为由于系统对转轴的动量矩守恒。所以有,因此可得:由上式可计算出方板的角速度为2-11取链条和圆盘为研究对象,受力如图(链条重力未画),设圆盘的角速度为,则系统对O轴的动量矩为:P根据动量矩定理有:整理上式可得:由运动学关系可知:,因此有:。上式可表示成:令,上述微分方程可表示成:,该方程的通解为:根据初始条件:可以确定积分常数,于是方程的解为:系统的动量在x轴上的投影为:系统的动量在y轴上的投影为:9根据动量定理:由上式解得:,2-14取整体为研究对象,系统的动能为:其中:分别是AB杆

5、的速度和楔块C的速度。若是AB杆上的A点相对楔块C的速度,则根据复合运动速度合成定理可知:,因此系统的动能可表示为:,系统在能够过程中,AB杆的重力作功。根据动能定理的微分形式有:,系统的动力学方程可表示成:由上式解得:,2-17质量为的均质物块上有一半径为的半圆槽,放在光滑的水平面上如图A所示。质量为光滑小球可在槽内运动,初始时,系统静止,小球在A处。求小球运动到B处时相对物块的速度、物块的速度、槽对小球的约束力和地面对物块的约束力。ABAB图A图B9解:取小球和物块为研究对象,受力如图B所示,由于作用在系统上的主动力均为有势力,水平方向无外力,因此系统的机械能

6、守恒,水平动量守恒。设小球为动点,物块为动系,设小球相对物块的速度为,物块的速度为,则系统的动能为设为势能零点,则系统的势能为根据机械能守恒定理和初始条件有,即系统水平方向的动量为:根据系统水平动量守恒和初始条件有由此求出,将这个结果代入上面的机械能守恒式,且最后求得:下面求作用在小球上的约束力和地面对物块的约束力。分别以小球和物块为研究对象,受力如图C,D所示。设小球的相对物块的加速度为,物块的加速度为,对于小球有动力学方程ABAB(a)图C图D对于物块,由于它是平移,根据质心运动动力学方程有9(b)将方程(a)在小球相对运动轨迹的法线方向投影,可得其中相对加速

7、度为已知量,。将方程(b)在水平方向和铅垂方向投影,可得领,联立求解三个投影可求出2-18取小球为研究对象,两个小球对称下滑,设圆环的半径为R。每个小球应用动能定理有:(a)将上式对时间求导并简化可得:(b)每个小球的加速度为取圆环与两个小球为研究对象,应用质心运动定理将上式在y轴上投影可得:将(a),(b)两式代入上式化简后得时对应的值就是圆环跳起的临界值,此时上式可表示成9上述方程的解为:,圆环脱离地面时的值为而也是方程的解,但是时圆环已脱离地面,因此不是圆环脱离地面时的值。z2-19取圆柱、细管和小球为研究对象。作用于系统上的外力或平行于铅垂轴或其作用线通过

8、铅垂轴。根

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。