小学数学奥数基础教程(四

小学数学奥数基础教程(四

ID:18718559

大小:139.50 KB

页数:14页

时间:2018-09-21

小学数学奥数基础教程(四_第1页
小学数学奥数基础教程(四_第2页
小学数学奥数基础教程(四_第3页
小学数学奥数基础教程(四_第4页
小学数学奥数基础教程(四_第5页
资源描述:

《小学数学奥数基础教程(四》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、小学数学奥数基础教程(四年级)本教程共30讲逻辑问题(二)  本讲介绍用假设法解逻辑问题。例1四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”  宝宝说:“是星星无意打破的。”  星星说:“是乐乐打破的。”  乐乐说:“星星说谎。”  强强说:“反正不是我打破的。”  如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?分析与解:因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。  假设星星说得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了

2、实话”矛盾,所以星星说错了。  假设乐乐说对了,按题意其他孩子就都说错了。由强强说错了,推知玻璃是强强打破的。宝宝、星星确实都说错了。符合题意。  所以是强强打破了玻璃。  由例1看出,用假设法解逻辑问题,就是根据题目的几种可能情况,逐一假设。如果推出矛盾,那么假设不成立;如果推不出矛盾,那么符合题意,假设成立。例2甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。  甲说:“丙第1名,我第3名。”  乙说:“我第1名,丁第4名。”  丙说:“丁第2名,我第3名。”  成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗?分析与解:我们以“他们每人只说对了一半”

3、作为前提,进行逻辑推理。  假设甲说的第一句话“丙第1名”是对的,第二句话“我第3名”是错的。由此推知乙说的“我第1名”是错的,“丁第4名”是对的;丙说的“丁第2名”是错的,“丙第3名”是对的。这与假设“丙第1名是对的”矛盾,所以假设不成立。  再假设甲的第二句“我第3名”是对的,那么丙说的第二句“我第3名”是错的,从而丙说的第一句话“丁第2名”是对的;由此推出乙说的“丁第4名”是错的,“我第1名”是对的。至此可以排出名次顺序:乙第1名、丁第2名、甲第3名、丙第4名。例3甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地。  甲说:“我和乙都住在北京,丙住在天津。”  乙说:“我和丁都住在上海

4、,丙住在天津。”  丙说:“我和甲都不住在北京,何伟住在南京。”  丁说:“甲和乙都住在北京,我住在广州。”  假定他们每个人都说了两句真话,一句假话。问:不在场的何伟住在哪儿?分析与解:因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。  因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话

5、,第三句“何伟住在南京”是真话。  所以,何伟住在南京。  在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。例4一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,小马虎见到这五人后就一人给了一本,结果全发错了。现在知道:  (1)甲拿的不是乙的,也不是丁的;  (2)乙拿的不是丙的,也不是丁的;  (3)丙拿的不是乙的,也不是戊的;  (4)丁拿的不是丙的,也不是戊的;  (5)戊拿的不是丁的,也不是甲的。另外,没有两人相互拿错(例如甲拿乙的,乙拿甲的)。  问:丙拿的是谁的本?丙的本被谁拿走

6、了?分析与解:根据“全发错了”及条件(1)~(5),可以得到表1:  由表1看出,丁的本被丙拿了。此时,再继续推理分析不大好下手,我们可用假设法。由表1知,甲拿的本不是丙的就是戊的。  先假设甲拿了丙的本。于是得到表2,表2中乙拿戊的本,戊拿乙的本。两人相互拿错,不合题意。  再假设甲拿戊的本。于是可得表3,经检验,表3符合题意。  所以丙拿了丁的本,丙的本被戊拿去了。例5甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说。他们在一起交谈可有趣啦:  (1)乙不会说英语,当甲与丙交谈时,却请他当翻译;  (2)甲会日语,丁不会日语,但他们却能相互交谈;  (3)

7、乙、丙、丁找不到三人都会的语言;  (4)没有人同时会日、法两种语言。  请问:甲、乙、丙、丁各会哪两种语言?分析与解:由(1)(2)(4)可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译。由下表看出,甲会的另一种语言不是中文就是英语。  先假设甲会说中文。由(2)知,丁也会中文;由(1)知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表;由(1)(4)推知乙会中文和法语;再由(3)及每人

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。