固体物理学复习new

固体物理学复习new

ID:18586973

大小:1.98 MB

页数:8页

时间:2018-09-19

固体物理学复习new_第1页
固体物理学复习new_第2页
固体物理学复习new_第3页
固体物理学复习new_第4页
固体物理学复习new_第5页
资源描述:

《固体物理学复习new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《固体物理学》复习1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):由倒格子基矢的定义:,同理可得:即面心立方的倒格子基矢与体心立方的正格基矢相同。所以,面心立方的倒格子是体心立方。(2)体心立方的正格子基矢(固体物理学原胞基矢):由倒格子基矢的定义:8,同理可得:即体心立方的倒格子基矢与面心立方的正格基矢相同。所以,体心立方的倒格子是面心立方。1.5、证明倒格子矢量垂直于密勒指数为的晶面系。8证明:因为,利用,容易证明所以,倒格子矢量垂

2、直于密勒指数为的晶面系。2.3、若一晶体的相互作用能可以表示为试求:(1)平衡间距;(2)结合能(单个原子的);(3)体弹性模量;(4)若取,计算及的值。解:(1)求平衡间距r0由,有:结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w表示)(2)求结合能w(单个原子的)8题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。显然结合能就是平衡时,晶体的势能,即Umin即:(可代入r0值,也可不代入)(3)体弹

3、性模量由体弹性模量公式:(4)m=2,n=10,,w=4eV,求α、β①②将,代入①②(1)平衡间距r0的计算晶体内能平衡条件,,(2)单个原子的结合能,,8(3)体弹性模量晶体的体积,A为常数,N为原胞数目晶体内能由平衡条件,得体弹性模量(4)若取8,,,3.2、讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当=时与一维单原子链的结果一一对应。解:质量为的原子位于2n-1,2n+1,2n+3……;质量为的原子位于2n,2n+2,2n+4……。牛顿运动方程N个原胞,有2N个独立的方程设方程的解,

4、代回方程中得到A、B有非零解,,则两种不同的格波的色散关系一个q对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.8当时,两种色散关系如图所示:长波极限情况下,,与一维单原子晶格格波的色散关系一致.4.4、解:我们求解面心立方,同学们做体心立方。(1)如只计及最近邻的相互作用,按照紧束缚近似的结果,晶体中S态电子的能量可表示成:在面心立方中,有12个最近邻,若取,则这12个最近邻的坐标是:①②③由于S态波函数是球对称的,在各个方向重叠积分相同,因此有相同的值,简单表示为J1=。又由于s态波函数为偶宇称,

5、即∴在近邻重叠积分中,波函数的贡献为正∴J1>0。于是,把近邻格矢代入表达式得到:8=+==(2)对于体心立方:有8个最近邻,这8个最近邻的坐标是:8

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。