Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器

Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器

ID:18567889

大小:438.66 KB

页数:28页

时间:2018-09-18

Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器_第1页
Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器_第2页
Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器_第3页
Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器_第4页
Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器_第5页
资源描述:

《Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks消除垃圾邮件发送者和众源标记任务排序注释器》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JournalofMachineLearningResearch13(2012)491-518Submitted4/11;Revised12/11;Published2/12EliminatingSpammersandRankingAnnotatorsforCrowdsourcedLabelingTasksVikasC.RaykarVIKAS.RAYKAR@SIEMENS.COMShipengYuSHIPENG.YU@SIEMENS.COMSiemensHealthcare51ValleyStreamParkway,E51Malvern

2、,PA19355,USAEditor:BenTaskarAbstractWiththeadventofcrowdsourcingservicesithasbecomequitecheapandreasonablyeffectivetogetadatasetlabeledbymultipleannotatorsinashortamountoftime.Variousmethodshavebeenproposedtoestimatetheconsensuslabelsbycorrectingforthebiasofannotatorswit

3、hdifferentkindsofexpertise.Sincewedonothavecontroloverthequalityoftheannotators,veryoftentheannotationscanbedominatedbyspammers,definedasannotatorswhoassignlabelsrandomlywithoutactuallylookingattheinstance.Spammerscanmakethecostofacquiringlabelsveryexpensiveandcanpotentia

4、llydegradethequalityofthefinalconsensuslabels.InthispaperweproposeanempiricalBayesianalgorithmcalledSpEMthatiterativelyeliminatesthespammersandestimatestheconsensuslabelsbasedonlyonthegoodannotators.Thealgorithmismotivatedbydefiningaspammerscorethatcanbeusedtoranktheannota

5、tors.Experimentsonsimulatedandrealdatashowthattheproposedapproachisbetterthan(orasgoodas)theearlierapproachesintermsoftheaccuracyandusesasignificantlysmallernumberofannotators.Keywords:crowdsourcing,multipleannotators,rankingannotators,spammers1.IntroductionAnnotatingadat

6、asetisoneofthemajorbottlenecksinusingsupervisedlearningtobuildgoodpredictivemodels.Gettingadatasetlabeledbyexpertscanbeexpensiveandtimeconsuming.Withtheadventofcrowdsourcingservices(Amazon'sMechanicalTurk1beingaprimeexample)ithasbecomequiteeasyandinexpensivetoacquirelabe

7、lsfromalargenumberofannotatorsinashortamountoftime(seeShengetal.2008,Snowetal.2008,andSorokinandForsyth2008forsomenaturallanguageprocessingandcomputervisioncasestudies).ForexampleinAMTtherequestersareabletoposetasksknownasHITs(HumanIntelligenceTasks).Workers(calledprovid

8、ers)canthenbrowseamongexistingtasksandcompletethemforasmallmonetarypaymentsetbytherequester.Amajordrawb

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。