欢迎来到天天文库
浏览记录
ID:18492010
大小:507.00 KB
页数:12页
时间:2018-09-18
《数学分析教案(第一章)new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章实数集与函数(12学时)§1.实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.学时安排:2学时教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《分析》这门旅程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基
2、本对象是函数,但这里的“函数”是定义在“实数集”上的(《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一实数及其性质1、实数.[问题]有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:对于正有限小数其中,记;对于正整数则记;对于负有限小数(包括负整数),则先将表示为无限小数,现在所得的小数之前加负号.0=例:利用上述规定,任何实数都可用一个确定的无限小数来表示.但新的问题又出现了:在此规定下,如何比较实数的大小?2.两实数大小
3、的比较1)定义1 给定两个非负实数,.其中为非负整数,为整数,.若有,则称与相等,记为;若或存在非负整数,使得,而,则称大于或小于,分别记为或.对于负实数、,若按上述规定分别有或,则分别称为与(或).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):为非负实数,称有理数为实数的位不足近似;称为实数的位过剩近似;对于实数,其位不足近似;位过剩近似.注:实数的不足近似当增大时不减,即有过剩近似当n增大时不增,即有.命题:记,为两个实数,则的等价条件是:存在非负整数n,使(其中为的位不足近似
4、,为的位过剩近似).命题应用————例1例1.设为实数,,证明存在有理数,满足.证.由,知:存在非负整数n,使得.令,则r为有理数,且.即.3.实数常用性质(详见附录Ⅱ.P289-302).l封闭性(实数集R对)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.l有序性:任意两个实数必满足下列关系之一:.l传递性;.l阿基米德性:使得.l稠密性:两个不等的实数之间总有另一个实数.l实数集R与数轴上的点有着一一对应关系.例2.设,证明:若对任何正数,有,则.(提示:反证法.利用“有序性”,取)二、绝对值与不等式(分析论证的基本工
5、具).1.绝对值的定义实数的绝对值的定义为.2.几何意义:从数轴看,数的绝对值就是点到原点的距离.认识到这一点非常有用,与此相应,表示就是数轴上点与之间的距离.3.性质.1)(非负性);2);3),;4)对任何有(三角不等式);5);6)().[练习]P4. 5[课堂小结]:实数:.§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用。教学重点:确界的概念及其有关性质(确界原理)。教学难点:确界的定义及其应用。学时安排:4学时
6、教学方法:讲授为主教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。引言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1实数的相关内容。下面,我们先来检验一下自学的效果如何!1.证明:对任何有(1);(2).2.证明:.3.设,证明:若对任何正数有,则.4.设,证明:存在有理数满足.[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念
7、性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。本节主要内容:1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。一区间与邻域1.区间(用来表示变量的变化范围)设且。1.邻域联想:“邻居”。字面意思:“邻近的区域”。(看左图)。与a邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a的对称区间”;如何用数学语言来表达呢?(1)a的邻域:设,满
8、足不等式的全体实数的集合称为点a的邻域,记作,或简记为,即.(2)点a的空心邻域.(3)a的右邻域和点a的空心右邻域(4)
此文档下载收益归作者所有