欢迎来到天天文库
浏览记录
ID:18239206
大小:108.50 KB
页数:6页
时间:2018-09-15
《高中数学 3.1.1两角差的余弦公式课时跟踪检测 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【优化指导】2015年高中数学3.1.1两角差的余弦公式课时跟踪检测新人教A版必修4考查知识点及角度难易度及题号基础中档稍难公式的简单运用1、2、4给值求值问题56、8、9、11综合应用37、10、12131.化简cos(45°-α)cos(α+15°)-sin(45°-α)·sin(α+15°)的结果为( )A. B.-C. D.-解析:原式=cos(45°-α+α+15°)=cos60°=.答案:A2.不满足sinαsinβ=-cosαcosβ的一组α,β值是( )A.α=,β= B.α=,β=C.α=,β= D.α=,β=解析:因为sinαsinβ=
2、-cosαcosβ,所以cos(α-β)=.经检验C中的α,β不满足,故选C.答案:C3.已知△ABC的三个内角分别为A、B、C,若a=(cosA,sinA),b=(cosB,sinB),且a·b=1,则△ABC一定是( )A.直角三角形 B.等腰三角形C.等边三角形 D.等腰直角三角形解析:因为a·b=cosAcosB+sinAsinB=cos(A-B)=1,且A、B、C是三角形的内角,所以A=B,即△ABC一定是等腰三角形.答案:B4.化简求值:cos80°·cos35°+cos10°·cos55°=________.解析:原式=cos80°·cos35°+sin80°·
3、sin35°=cos(80°-35°)=cos45°=.答案:5.已知cos=,则cosα+sinα的值为________.解析:cos=coscosα+sinsinα=cosα+sinα=(cosα+sinα)=.∴cosα+sinα=.答案:6.已知sinα=,α∈,cosβ=-,β是第三象限角,求cos(α-β).解:∵α∈,sinα=,∴cosα=-.又β在第三象限且cosβ=-,∴sinβ=-.∴cos(α-β)=cosαcosβ+sinαsinβ=-×+×=-=-.7.化简:.解:原式=====.8.已知cos=,0<θ<,则cosθ等于( )A.B.C.D.解析
4、:∵θ∈,∴θ+∈.∴sin=.又cosθ=cos=.答案:A9.已知sinα+sinβ+sinγ=0和cosα+cosβ+cosγ=0,则cos(α-β)的值是( )A. B.C.- D.-解析:由已知得,-sinγ=sinα+sinβ,①-cosγ=cosα+cosβ,②①2+②2得,1=1+1+2sinαsinβ+2cosαcosβ,化简得cosαcosβ+sinαsinβ=-,即cos(α-β)=-.答案:C10.函数f(x)=sin2x+cos2x的最小正周期是______.解析:由于f(x)=cos2xcos+sin2xsin=cos,所以T==π.答案:π11.
5、已知cos+sinα=,则cos的值是______.解析:cos+sinα=cosα+sinα=,cosα+sinα=,∴cos=cosα+sinα=.答案:12.若cos(α-β)=,cos2α=,并且α、β均为锐角,且α<β,求α+β的值.解:∵0<α<β<,∴-<α-β<0,0<2α<π.∴由cos(α-β)=,得sin(α-β)=-,由cos2α=,得sin2α=.∴cos(α+β)=cos[2α-(α-β)]=cos2αcos(α-β)+sin2αsin(α-β)=×+×=-.又α+β∈(0,π),∴α+β=.13.已知△ABC中,sin(A+B)=,cosB=-,求
6、cosA.解:∵cosB=-,∴B为钝角,且sinB=.∴A+B为钝角.∵sin(A+B)=,∴cos(A+B)=-=-.∴cosA=cos[(A+B)-B]=cos(A+B)cosB+sin(A+B)sinB=-×+×=.1.应用两角差余弦公式的三个注意点(1)在差角的余弦公式中,α,β既可以是单角,也可以是复角.(2)要注意诱导公式的应用.(3)公式的应用具有灵活性,解题时要注意正向、逆向和变式形式的选择.2.应用两角差余弦公式解决的两类问题(1)给式求值或给值求值问题,即由给出的某些函数关系式(或某些角的三角函数值),求另外一些角的三角函数值,关键在于“变式”或“变角”,
7、使“目标角”换成“已知角”.注意公式的正用、逆用、变形用,有时需运用拆角、拼角等技巧.(2)“给值求角”问题,实际上也可转化为“给值求值”问题,求一个角的值,可分以下三步进行:①求角的某一三角函数值;②确定角所在的范围(找区间);③确定角的值.确定用所求角的哪种三角函数值,要根据具体题目而定.
此文档下载收益归作者所有